Restricted interpolation by meromorphic inner functions

Alexei Poltoratski; Rishika Rupam

Concrete Operators (2016)

  • Volume: 3, Issue: 1, page 102-111
  • ISSN: 2299-3282

Abstract

top
Meromorphic Inner Functions (MIFs) on the upper half plane play an important role in applications to spectral problems for differential operators. In this paper, we survey some recent results concerning function theoretic properties of MIFs and show their connections with spectral problems for the Schrödinger operator.

How to cite

top

Alexei Poltoratski, and Rishika Rupam. "Restricted interpolation by meromorphic inner functions." Concrete Operators 3.1 (2016): 102-111. <http://eudml.org/doc/285919>.

@article{AlexeiPoltoratski2016,
abstract = {Meromorphic Inner Functions (MIFs) on the upper half plane play an important role in applications to spectral problems for differential operators. In this paper, we survey some recent results concerning function theoretic properties of MIFs and show their connections with spectral problems for the Schrödinger operator.},
author = {Alexei Poltoratski, Rishika Rupam},
journal = {Concrete Operators},
keywords = {Inner functions; Model spaces; Schrödinger operators; meromorphic functions; inner functions; Schrödinger operator},
language = {eng},
number = {1},
pages = {102-111},
title = {Restricted interpolation by meromorphic inner functions},
url = {http://eudml.org/doc/285919},
volume = {3},
year = {2016},
}

TY - JOUR
AU - Alexei Poltoratski
AU - Rishika Rupam
TI - Restricted interpolation by meromorphic inner functions
JO - Concrete Operators
PY - 2016
VL - 3
IS - 1
SP - 102
EP - 111
AB - Meromorphic Inner Functions (MIFs) on the upper half plane play an important role in applications to spectral problems for differential operators. In this paper, we survey some recent results concerning function theoretic properties of MIFs and show their connections with spectral problems for the Schrödinger operator.
LA - eng
KW - Inner functions; Model spaces; Schrödinger operators; meromorphic functions; inner functions; Schrödinger operator
UR - http://eudml.org/doc/285919
ER -

References

top
  1. [1] A. B. Aleksandrov. Multiplicity of boundary values of inner functions. Izv. Akad. Nauk Arm. SSR, 22:490–503, (1987).  
  2. [2] A. B. Aleksandrov. Isometric embeddings of coinvariant subspaces of the shift operator. Zapiski Nauchnykh Seminarov, S.- Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 232:5–15, 1996. no. Issled. po Linein. Oper. i Teor. Funktsii. 24, 5–15, 213; English transl., Journal of Mathematical Sciences (New York) 92 (1998), no. 1, 3543–3549.  Zbl0888.30023
  3. [3] V. Ambarzumian. Über eine frage der eigenwerttheorie. Zeitschrift für Physik A: Hadrons and Nuclei, 53(9):690–695, (1929).  Zbl55.0868.01
  4. [4] A. D. Baranov. De branges’ mistake. Preprint (Private Communications), (2011).  
  5. [5] A. Beurling and P. Malliavin. On fourier transforms of measures with compact support. Acta Mathematica, 107(3):291–309, (1962).  Zbl0127.32601
  6. [6] A. Beurling and P. Malliavin. On the closure of characters and the zeros of entire functions. Acta Mathematica, 118(1):79–93, (1967).  Zbl0171.11901
  7. [7] G. Borg. Uniqueness theorems in the spectral theory of y" +(λ - q(x))y =0. In Proc. of the 11th Scandinavian Congress of Mathematicians, Johan Grundt Tanums Forlag, Oslo, pages 276–287, (1952).  Zbl0048.06802
  8. [8] J. A. Cima, A. L. Matheson, and W. T. Ross. The Cauchy transform. Mathematical Surveys and Monographs, vol. 125, American Mathematical Society, Providence, RI, (2006).  Zbl1096.30046
  9. [9] D. N. Clark. One dimensional perturbations of restricted shifts. Journal d’Analyse Mathematique, 25(1):169–191, (1972).  Zbl0252.47010
  10. [10] L. de Branges. Hilbert Spaces of Entire Functions. Prentice Hall, Englewood Cliffs, NJ, (1968).  Zbl0157.43301
  11. [11] R. del Rio, F. Gesztesy, and B. Simon. Inverse spectral analysis with partial information on the potential. III. updating boundary conditions. International Mathematics Research Notices, 1997(15):751–758, (1997).  Zbl0898.34075
  12. [12] F. Gesztesy and B. Simon. On the determination of a potential from three spectra. Differential Operators and Spectral Theory, 189:85–92, (1999).  Zbl0922.34008
  13. [13] F. Gesztesy and B. Simon. Inverse spectral analysis with partial information on the potential, II. the case of discrete spectrum. Transactions of the American Mathematical Society, 352(6):2765–2787, (2000).  Zbl0948.34060
  14. [14] M. Horváth. Inverse spectral problems and closed exponential systems. Annals of Mathematics, 162(2):885–918, (2005).  
  15. [15] M. G. Krein. On the trace formula in perturbation theory. Matematicheskii Sbornik, 75(3):597–626, (1953).  Zbl0052.12303
  16. [16] N. Levinson. The inverse sturm-liouville problem. Matematisk Tidsskrift. B, pages 25–30, (1949).  Zbl0045.36402
  17. [17] B. M. Levitan and I. S. Sargsjan. Sturm-Liouville and Dirac operators. Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers Group, Dordrecht, (1991).  
  18. [18] I. M. Lifshits. On a problem of the theory of perturbations connected with quantum statistics. Uspekhi Matematicheskikh Nauk, 7(1):171–180, (1952).  Zbl0046.21203
  19. [19] N. Makarov and A. Poltoratski. Meromorphic inner functions, toeplitz kernels and the uncertainty principle. In Perspectives in Analysis, pages 185–252. Springer, (2005).  Zbl1118.47020
  20. [20] N. Makarov and A. Poltoratski. Beurling-malliavin theory for toeplitz kernels. Inventiones Mathematicae, 180(3):443–480, (2010).  Zbl1186.47025
  21. [21] V. A. Marchenko. Some questions in the theory of one-dimensional linear differential operators of the second order. Trudy Mosk. Mat. Obsch. 1 327–420, American Mathematical Society Translations, 2(101):1–104, (1952).  
  22. [22] M. Mitkovski and A. Poltoratski. Pólya sequences, toeplitz kernels and gap theorems. Advances in Mathematics, 224(3):1057– 1070, (2010).  Zbl1204.30018
  23. [23] M. Mitkovski and A. Poltoratski. On the determinacy problem for measures. Inventiones Mathematicae, 202(3):1241–1267, (2015).  Zbl1346.30015
  24. [24] M. Mitkovski and R. Rupam. Defining sets for mifs and uniqueness of potentials. In Preparation.  
  25. [25] A. Poltoratski. Spectral gaps for sets and measures. Acta Mathematica, 208(1):151–209, (2012).  Zbl1245.42008
  26. [26] A. Poltoratski. A problem on completeness of exponentials. Annals of Mathematics, 178(3):983–1016, (2013).  Zbl1285.42009
  27. [27] A. Poltoratski. Toeplitz Approach to Problems of the Uncertainty Principle, volume 121 of CBMS. American Mathematical Society, (2015).  Zbl1317.47003
  28. [28] A. Poltoratski and D. Sarason. Aleksandrov-clark measures. Contemporary Mathematics, 393:1–14, (2006).  Zbl1102.30032
  29. [29] R. Rupam. Existence of meromorphic inner functions based on spectral data. In Preparation.  
  30. [30] R. Rupam. Uniform boundedness of derivatives of meromorphic inner functions on the real line. Journal d’Analyse Mathematique, to appear. arXiv preprint :1309.6728  
  31. [5].  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.