Lucas sequences with cyclotomic root field

Christian Ballot

  • 2013

Abstract

top
A pair of Lucas sequences Uₙ = (αⁿ-βⁿ)/(α-β) and Vₙ = αⁿ + βⁿ is famously associated with each polynomial x² - Px + Q ∈ ℤ[x] with roots α and β. It is the purpose of this paper to show that when the root field of x² - Px + Q is either ℚ(i), or ℚ(ω), where ω = e 2 π i / 6 , there are respectively two and four other second-order integral recurring sequences of characteristic polynomial x² - Px + Q that are of the same kinship as the U and V Lucas sequences. These are, when ℚ(α,β) = ℚ(i), the G and the H sequences with Gₙ = [(1-i)αⁿ + (1+i)α̅ⁿ]/2, Hₙ = [(1+i)αⁿ + (1-i)α̅ⁿ]/2, and, when ℚ(α,β) = ℚ(ω), the S, T, Y and Z sequences given by Sₙ = (ωαⁿ - ω̅α̅ⁿ)/√(-3), Tₙ = (ω²αⁿ - ω̅²α̅ⁿ)/√(-3), Yₙ = ω̅αⁿ + ωα̅ⁿ, Zₙ = ωαⁿ + ω̅α̅ⁿ, where α̅ = β and ω ̅ = e - 2 π i / 6 . Several themes of the theory of Lucas sequences have been selected and studied to support the claim that the six sequences G, H, S, T, Y and Z ought to be viewed as Lucas sequences.

How to cite

top

Christian Ballot. Lucas sequences with cyclotomic root field. 2013. <http://eudml.org/doc/285988>.

@book{ChristianBallot2013,
abstract = {A pair of Lucas sequences Uₙ = (αⁿ-βⁿ)/(α-β) and Vₙ = αⁿ + βⁿ is famously associated with each polynomial x² - Px + Q ∈ ℤ[x] with roots α and β. It is the purpose of this paper to show that when the root field of x² - Px + Q is either ℚ(i), or ℚ(ω), where $ω = e^\{2πi/6\}$, there are respectively two and four other second-order integral recurring sequences of characteristic polynomial x² - Px + Q that are of the same kinship as the U and V Lucas sequences. These are, when ℚ(α,β) = ℚ(i), the G and the H sequences with Gₙ = [(1-i)αⁿ + (1+i)α̅ⁿ]/2, Hₙ = [(1+i)αⁿ + (1-i)α̅ⁿ]/2, and, when ℚ(α,β) = ℚ(ω), the S, T, Y and Z sequences given by Sₙ = (ωαⁿ - ω̅α̅ⁿ)/√(-3), Tₙ = (ω²αⁿ - ω̅²α̅ⁿ)/√(-3), Yₙ = ω̅αⁿ + ωα̅ⁿ, Zₙ = ωαⁿ + ω̅α̅ⁿ, where α̅ = β and $ω̅ = e^\{-2πi/6\}$. Several themes of the theory of Lucas sequences have been selected and studied to support the claim that the six sequences G, H, S, T, Y and Z ought to be viewed as Lucas sequences.},
author = {Christian Ballot},
keywords = {Lucas sequences; identities; laws of appearance and repetition; congruences; Wolstenholme congruence; divisibility; prime density},
language = {eng},
title = {Lucas sequences with cyclotomic root field},
url = {http://eudml.org/doc/285988},
year = {2013},
}

TY - BOOK
AU - Christian Ballot
TI - Lucas sequences with cyclotomic root field
PY - 2013
AB - A pair of Lucas sequences Uₙ = (αⁿ-βⁿ)/(α-β) and Vₙ = αⁿ + βⁿ is famously associated with each polynomial x² - Px + Q ∈ ℤ[x] with roots α and β. It is the purpose of this paper to show that when the root field of x² - Px + Q is either ℚ(i), or ℚ(ω), where $ω = e^{2πi/6}$, there are respectively two and four other second-order integral recurring sequences of characteristic polynomial x² - Px + Q that are of the same kinship as the U and V Lucas sequences. These are, when ℚ(α,β) = ℚ(i), the G and the H sequences with Gₙ = [(1-i)αⁿ + (1+i)α̅ⁿ]/2, Hₙ = [(1+i)αⁿ + (1-i)α̅ⁿ]/2, and, when ℚ(α,β) = ℚ(ω), the S, T, Y and Z sequences given by Sₙ = (ωαⁿ - ω̅α̅ⁿ)/√(-3), Tₙ = (ω²αⁿ - ω̅²α̅ⁿ)/√(-3), Yₙ = ω̅αⁿ + ωα̅ⁿ, Zₙ = ωαⁿ + ω̅α̅ⁿ, where α̅ = β and $ω̅ = e^{-2πi/6}$. Several themes of the theory of Lucas sequences have been selected and studied to support the claim that the six sequences G, H, S, T, Y and Z ought to be viewed as Lucas sequences.
LA - eng
KW - Lucas sequences; identities; laws of appearance and repetition; congruences; Wolstenholme congruence; divisibility; prime density
UR - http://eudml.org/doc/285988
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.