Toric varieties in phylogenetics

M. Michałek

  • 2015

Abstract

top
The paper contains a revised, and extended by new results, part of the author's PhD thesis. The main objects that we study are toric varieties naturally associated to special Markov processes on trees. Such Markov processes can be defined by a tree T and a group G. They are called group-based models. The main, but not unique, motivation to consider these processes comes from phylogenetics. We study the geometry, defining equations and combinatorial description of the associated toric varieties. We obtain new results for a large class of not necessarily abelian group-based models, which we call G-models. We also prove that equations of degree 4 define the projective scheme representing the 3-Kimura model.

How to cite

top

M. Michałek. Toric varieties in phylogenetics. 2015. <http://eudml.org/doc/285997>.

@book{M2015,
abstract = {The paper contains a revised, and extended by new results, part of the author's PhD thesis. The main objects that we study are toric varieties naturally associated to special Markov processes on trees. Such Markov processes can be defined by a tree T and a group G. They are called group-based models. The main, but not unique, motivation to consider these processes comes from phylogenetics. We study the geometry, defining equations and combinatorial description of the associated toric varieties. We obtain new results for a large class of not necessarily abelian group-based models, which we call G-models. We also prove that equations of degree 4 define the projective scheme representing the 3-Kimura model.},
author = {M. Michałek},
keywords = {group-based model; algebraic phylogenetics; Kimura models},
language = {eng},
title = {Toric varieties in phylogenetics},
url = {http://eudml.org/doc/285997},
year = {2015},
}

TY - BOOK
AU - M. Michałek
TI - Toric varieties in phylogenetics
PY - 2015
AB - The paper contains a revised, and extended by new results, part of the author's PhD thesis. The main objects that we study are toric varieties naturally associated to special Markov processes on trees. Such Markov processes can be defined by a tree T and a group G. They are called group-based models. The main, but not unique, motivation to consider these processes comes from phylogenetics. We study the geometry, defining equations and combinatorial description of the associated toric varieties. We obtain new results for a large class of not necessarily abelian group-based models, which we call G-models. We also prove that equations of degree 4 define the projective scheme representing the 3-Kimura model.
LA - eng
KW - group-based model; algebraic phylogenetics; Kimura models
UR - http://eudml.org/doc/285997
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.