Semi-formal theory and Stokes' phenomenon of non-linear meromorphic systems of ordinary differential equations

Werner Balser

Banach Center Publications (2012)

  • Volume: 97, Issue: 1, page 11-28
  • ISSN: 0137-6934

Abstract

top
This article continues earlier work of the author on non-linear systems of ordinary differential equations, published in Asymptotic Analysis 15 (1997), MR no. 98g:34015b. There, a completely formal theory was presented, while here we are concerned with a semi-formal approach: Solutions of non-linear systems of ordinary meromorphic differential equations are represented as, in general divergent, power series in several free parameters. The coefficients, aside from an exponential polynomial, a general power and integer powers of the logarithm, contain holomorphic functions that are the multi-sums of formal power series. In J. Écalle's terminology such a semi-formal solution may be regarded as a transseries. In the author's opinion, however, they are best understood as power series in several variables. In this setting, we shall define and investigate the non-linear analogues of normal solutions, Stokes multipliers, and central connection coefficients, well known in the linear case. Moreover, we shall briefly address the question of convergence of the semi-formal series occurring. In particular, we wish to point out that in the cases when the series, due to the small denominator phenomenon, fails to converge, it is natural to be content with what shall be called partial convergence of the series, meaning that some of the variables are set equal to 0, leaving a power series in fewer variables that then converges.

How to cite

top

Werner Balser. "Semi-formal theory and Stokes' phenomenon of non-linear meromorphic systems of ordinary differential equations." Banach Center Publications 97.1 (2012): 11-28. <http://eudml.org/doc/286196>.

@article{WernerBalser2012,
abstract = {This article continues earlier work of the author on non-linear systems of ordinary differential equations, published in Asymptotic Analysis 15 (1997), MR no. 98g:34015b. There, a completely formal theory was presented, while here we are concerned with a semi-formal approach: Solutions of non-linear systems of ordinary meromorphic differential equations are represented as, in general divergent, power series in several free parameters. The coefficients, aside from an exponential polynomial, a general power and integer powers of the logarithm, contain holomorphic functions that are the multi-sums of formal power series. In J. Écalle's terminology such a semi-formal solution may be regarded as a transseries. In the author's opinion, however, they are best understood as power series in several variables. In this setting, we shall define and investigate the non-linear analogues of normal solutions, Stokes multipliers, and central connection coefficients, well known in the linear case. Moreover, we shall briefly address the question of convergence of the semi-formal series occurring. In particular, we wish to point out that in the cases when the series, due to the small denominator phenomenon, fails to converge, it is natural to be content with what shall be called partial convergence of the series, meaning that some of the variables are set equal to 0, leaving a power series in fewer variables that then converges.},
author = {Werner Balser},
journal = {Banach Center Publications},
keywords = {nonlinear ordinary differential equations; formal solutions; Stokes phenomenon; multi-summability},
language = {eng},
number = {1},
pages = {11-28},
title = {Semi-formal theory and Stokes' phenomenon of non-linear meromorphic systems of ordinary differential equations},
url = {http://eudml.org/doc/286196},
volume = {97},
year = {2012},
}

TY - JOUR
AU - Werner Balser
TI - Semi-formal theory and Stokes' phenomenon of non-linear meromorphic systems of ordinary differential equations
JO - Banach Center Publications
PY - 2012
VL - 97
IS - 1
SP - 11
EP - 28
AB - This article continues earlier work of the author on non-linear systems of ordinary differential equations, published in Asymptotic Analysis 15 (1997), MR no. 98g:34015b. There, a completely formal theory was presented, while here we are concerned with a semi-formal approach: Solutions of non-linear systems of ordinary meromorphic differential equations are represented as, in general divergent, power series in several free parameters. The coefficients, aside from an exponential polynomial, a general power and integer powers of the logarithm, contain holomorphic functions that are the multi-sums of formal power series. In J. Écalle's terminology such a semi-formal solution may be regarded as a transseries. In the author's opinion, however, they are best understood as power series in several variables. In this setting, we shall define and investigate the non-linear analogues of normal solutions, Stokes multipliers, and central connection coefficients, well known in the linear case. Moreover, we shall briefly address the question of convergence of the semi-formal series occurring. In particular, we wish to point out that in the cases when the series, due to the small denominator phenomenon, fails to converge, it is natural to be content with what shall be called partial convergence of the series, meaning that some of the variables are set equal to 0, leaving a power series in fewer variables that then converges.
LA - eng
KW - nonlinear ordinary differential equations; formal solutions; Stokes phenomenon; multi-summability
UR - http://eudml.org/doc/286196
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.