On (n,k)-quasiparanormal operators
Studia Mathematica (2012)
- Volume: 209, Issue: 3, page 289-301
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topJiangtao Yuan, and Guoxing Ji. "On (n,k)-quasiparanormal operators." Studia Mathematica 209.3 (2012): 289-301. <http://eudml.org/doc/286198>.
@article{JiangtaoYuan2012,
abstract = {Let T be a bounded linear operator on a complex Hilbert space . For positive integers n and k, an operator T is called (n,k)-quasiparanormal if
$||T^\{1+n\}(T^\{k\}x)||^\{1/(1+n)\} ||T^\{k\}x||^\{n/(1+n)\} ≥ ||T(T^\{k\}x)||$ for x ∈ .
The class of (n,k)-quasiparanormal operators contains the classes of n-paranormal and k-quasiparanormal operators. We consider some properties of (n,k)-quasiparanormal operators: (1) inclusion relations and examples; (2) a matrix representation and SVEP (single valued extension property); (3) ascent and Bishop’s property (β); (4) quasinilpotent part and Riesz idempotents for k-quasiparanormal operators.},
author = {Jiangtao Yuan, Guoxing Ji},
journal = {Studia Mathematica},
keywords = {quasiparanormal and paranormal operators; SVEP; finite ascent; isolated spectral point; Riesz idempotent},
language = {eng},
number = {3},
pages = {289-301},
title = {On (n,k)-quasiparanormal operators},
url = {http://eudml.org/doc/286198},
volume = {209},
year = {2012},
}
TY - JOUR
AU - Jiangtao Yuan
AU - Guoxing Ji
TI - On (n,k)-quasiparanormal operators
JO - Studia Mathematica
PY - 2012
VL - 209
IS - 3
SP - 289
EP - 301
AB - Let T be a bounded linear operator on a complex Hilbert space . For positive integers n and k, an operator T is called (n,k)-quasiparanormal if
$||T^{1+n}(T^{k}x)||^{1/(1+n)} ||T^{k}x||^{n/(1+n)} ≥ ||T(T^{k}x)||$ for x ∈ .
The class of (n,k)-quasiparanormal operators contains the classes of n-paranormal and k-quasiparanormal operators. We consider some properties of (n,k)-quasiparanormal operators: (1) inclusion relations and examples; (2) a matrix representation and SVEP (single valued extension property); (3) ascent and Bishop’s property (β); (4) quasinilpotent part and Riesz idempotents for k-quasiparanormal operators.
LA - eng
KW - quasiparanormal and paranormal operators; SVEP; finite ascent; isolated spectral point; Riesz idempotent
UR - http://eudml.org/doc/286198
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.