Perturbed nonlinear degenerate problems in N

A. El Khalil; S. El Manouni; M. Ouanan

Applicationes Mathematicae (2009)

  • Volume: 36, Issue: 2, page 213-223
  • ISSN: 1233-7234

Abstract

top
Via critical point theory we establish the existence and regularity of solutions for the quasilinear elliptic problem ⎧ d i v ( x , u ) + a ( x ) | u | p - 2 u = g ( x ) | u | p - 2 u + h ( x ) | u | s - 1 u in N ⎨ ⎩ u > 0, l i m | x | u ( x ) = 0 , where 1 < p < N; a(x) is assumed to satisfy a coercivity condition; h(x) and g(x) are not necessarily bounded but satisfy some integrability restrictions.

How to cite

top

A. El Khalil, S. El Manouni, and M. Ouanan. "Perturbed nonlinear degenerate problems in $ℝ^{N}$." Applicationes Mathematicae 36.2 (2009): 213-223. <http://eudml.org/doc/286282>.

@article{A2009,
abstract = {Via critical point theory we establish the existence and regularity of solutions for the quasilinear elliptic problem ⎧ $div(x,∇u) + a(x)|u|^\{p-2\}u = g(x)|u|^\{p-2\}u + h(x)|u|^\{s-1\}u$ in $ℝ^\{N\}$ ⎨ ⎩ u > 0, $lim_\{|x|→ ∞\} u(x) = 0$, where 1 < p < N; a(x) is assumed to satisfy a coercivity condition; h(x) and g(x) are not necessarily bounded but satisfy some integrability restrictions.},
author = {A. El Khalil, S. El Manouni, M. Ouanan},
journal = {Applicationes Mathematicae},
keywords = {perturbed problem; Mountain Pass Lemma; existence of solutions; -estimate},
language = {eng},
number = {2},
pages = {213-223},
title = {Perturbed nonlinear degenerate problems in $ℝ^\{N\}$},
url = {http://eudml.org/doc/286282},
volume = {36},
year = {2009},
}

TY - JOUR
AU - A. El Khalil
AU - S. El Manouni
AU - M. Ouanan
TI - Perturbed nonlinear degenerate problems in $ℝ^{N}$
JO - Applicationes Mathematicae
PY - 2009
VL - 36
IS - 2
SP - 213
EP - 223
AB - Via critical point theory we establish the existence and regularity of solutions for the quasilinear elliptic problem ⎧ $div(x,∇u) + a(x)|u|^{p-2}u = g(x)|u|^{p-2}u + h(x)|u|^{s-1}u$ in $ℝ^{N}$ ⎨ ⎩ u > 0, $lim_{|x|→ ∞} u(x) = 0$, where 1 < p < N; a(x) is assumed to satisfy a coercivity condition; h(x) and g(x) are not necessarily bounded but satisfy some integrability restrictions.
LA - eng
KW - perturbed problem; Mountain Pass Lemma; existence of solutions; -estimate
UR - http://eudml.org/doc/286282
ER -

NotesEmbed ?

top

You must be logged in to post comments.