Maximal function and Carleson measures in the theory of Békollé-Bonami weights

Carnot D. Kenfack; Benoît F. Sehba

Colloquium Mathematicae (2016)

  • Volume: 142, Issue: 2, page 211-226
  • ISSN: 0010-1354

Abstract

top
Let ω be a Békollé-Bonami weight. We give a complete characterization of the positive measures μ such that | M ω f ( z ) | q d μ ( z ) C ( | f ( z ) | p ω ( z ) d V ( z ) ) q / p and μ ( z : M f ( z ) > λ ) C / ( λ q ) ( | f ( z ) | p ω ( z ) d V ( z ) ) q / p , where M ω is the weighted Hardy-Littlewood maximal function on the upper half-plane and 1 ≤ p,q <; ∞.

How to cite

top

Carnot D. Kenfack, and Benoît F. Sehba. "Maximal function and Carleson measures in the theory of Békollé-Bonami weights." Colloquium Mathematicae 142.2 (2016): 211-226. <http://eudml.org/doc/286345>.

@article{CarnotD2016,
abstract = {Let ω be a Békollé-Bonami weight. We give a complete characterization of the positive measures μ such that $∫_\{\} |M_\{ω\}f(z)|^\{q\} dμ(z) ≤ C(∫_\{\} |f(z)|^\{p\} ω(z)dV(z))^\{q/p\}$ and $μ(\{z ∈ : Mf(z) > λ\}) ≤ C/(λ^\{q\})(∫_\{\} |f(z)|^\{p\} ω(z)dV(z))^\{q/p\}$, where $M_\{ω\}$ is the weighted Hardy-Littlewood maximal function on the upper half-plane and 1 ≤ p,q <; ∞.},
author = {Carnot D. Kenfack, Benoît F. Sehba},
journal = {Colloquium Mathematicae},
keywords = {maximal function; Carleson measures; Békollé-Bonami weights},
language = {eng},
number = {2},
pages = {211-226},
title = {Maximal function and Carleson measures in the theory of Békollé-Bonami weights},
url = {http://eudml.org/doc/286345},
volume = {142},
year = {2016},
}

TY - JOUR
AU - Carnot D. Kenfack
AU - Benoît F. Sehba
TI - Maximal function and Carleson measures in the theory of Békollé-Bonami weights
JO - Colloquium Mathematicae
PY - 2016
VL - 142
IS - 2
SP - 211
EP - 226
AB - Let ω be a Békollé-Bonami weight. We give a complete characterization of the positive measures μ such that $∫_{} |M_{ω}f(z)|^{q} dμ(z) ≤ C(∫_{} |f(z)|^{p} ω(z)dV(z))^{q/p}$ and $μ({z ∈ : Mf(z) > λ}) ≤ C/(λ^{q})(∫_{} |f(z)|^{p} ω(z)dV(z))^{q/p}$, where $M_{ω}$ is the weighted Hardy-Littlewood maximal function on the upper half-plane and 1 ≤ p,q <; ∞.
LA - eng
KW - maximal function; Carleson measures; Békollé-Bonami weights
UR - http://eudml.org/doc/286345
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.