Maximal function and Carleson measures in the theory of Békollé-Bonami weights
Carnot D. Kenfack; Benoît F. Sehba
Colloquium Mathematicae (2016)
- Volume: 142, Issue: 2, page 211-226
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topCarnot D. Kenfack, and Benoît F. Sehba. "Maximal function and Carleson measures in the theory of Békollé-Bonami weights." Colloquium Mathematicae 142.2 (2016): 211-226. <http://eudml.org/doc/286345>.
@article{CarnotD2016,
abstract = {Let ω be a Békollé-Bonami weight. We give a complete characterization of the positive measures μ such that
$∫_\{\} |M_\{ω\}f(z)|^\{q\} dμ(z) ≤ C(∫_\{\} |f(z)|^\{p\} ω(z)dV(z))^\{q/p\}$
and
$μ(\{z ∈ : Mf(z) > λ\}) ≤ C/(λ^\{q\})(∫_\{\} |f(z)|^\{p\} ω(z)dV(z))^\{q/p\}$,
where $M_\{ω\}$ is the weighted Hardy-Littlewood maximal function on the upper half-plane and 1 ≤ p,q <; ∞.},
author = {Carnot D. Kenfack, Benoît F. Sehba},
journal = {Colloquium Mathematicae},
keywords = {maximal function; Carleson measures; Békollé-Bonami weights},
language = {eng},
number = {2},
pages = {211-226},
title = {Maximal function and Carleson measures in the theory of Békollé-Bonami weights},
url = {http://eudml.org/doc/286345},
volume = {142},
year = {2016},
}
TY - JOUR
AU - Carnot D. Kenfack
AU - Benoît F. Sehba
TI - Maximal function and Carleson measures in the theory of Békollé-Bonami weights
JO - Colloquium Mathematicae
PY - 2016
VL - 142
IS - 2
SP - 211
EP - 226
AB - Let ω be a Békollé-Bonami weight. We give a complete characterization of the positive measures μ such that
$∫_{} |M_{ω}f(z)|^{q} dμ(z) ≤ C(∫_{} |f(z)|^{p} ω(z)dV(z))^{q/p}$
and
$μ({z ∈ : Mf(z) > λ}) ≤ C/(λ^{q})(∫_{} |f(z)|^{p} ω(z)dV(z))^{q/p}$,
where $M_{ω}$ is the weighted Hardy-Littlewood maximal function on the upper half-plane and 1 ≤ p,q <; ∞.
LA - eng
KW - maximal function; Carleson measures; Békollé-Bonami weights
UR - http://eudml.org/doc/286345
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.