top
We consider the subspace of L²(ℝ) spanned by the integer shifts of one function ψ, and formulate a condition on the family , which is equivalent to the weight function being > 0 a.e.
Maciej Paluszyński. "A note on integer translates of a square integrable function on ℝ." Colloquium Mathematicae 118.2 (2010): 593-597. <http://eudml.org/doc/286373>.
@article{MaciejPaluszyński2010, abstract = {We consider the subspace of L²(ℝ) spanned by the integer shifts of one function ψ, and formulate a condition on the family $\{ψ(·-n)\}_\{n=-∞\}^\{∞\}$, which is equivalent to the weight function $∑_\{n=-∞\}^\{∞\} |ψ̂(·+n)|²$ being > 0 a.e.}, author = {Maciej Paluszyński}, journal = {Colloquium Mathematicae}, keywords = {wavelets; shift-invariant space; integer translates}, language = {eng}, number = {2}, pages = {593-597}, title = {A note on integer translates of a square integrable function on ℝ}, url = {http://eudml.org/doc/286373}, volume = {118}, year = {2010}, }
TY - JOUR AU - Maciej Paluszyński TI - A note on integer translates of a square integrable function on ℝ JO - Colloquium Mathematicae PY - 2010 VL - 118 IS - 2 SP - 593 EP - 597 AB - We consider the subspace of L²(ℝ) spanned by the integer shifts of one function ψ, and formulate a condition on the family ${ψ(·-n)}_{n=-∞}^{∞}$, which is equivalent to the weight function $∑_{n=-∞}^{∞} |ψ̂(·+n)|²$ being > 0 a.e. LA - eng KW - wavelets; shift-invariant space; integer translates UR - http://eudml.org/doc/286373 ER -