Stationary and convergent strategies in Choquet games

François G. Dorais; Carl Mummert

Fundamenta Mathematicae (2010)

  • Volume: 209, Issue: 1, page 59-79
  • ISSN: 0016-2736

Abstract

top
If Nonempty has a winning strategy against Empty in the Choquet game on a space, the space is said to be a Choquet space. Such a winning strategy allows Nonempty to consider the entire finite history of previous moves before making each new move; a stationary strategy only permits Nonempty to consider the previous move by Empty. We show that Nonempty has a stationary winning strategy for every second-countable T₁ Choquet space. More generally, Nonempty has a stationary winning strategy for any T₁ Choquet space with an open-finite basis. We also study convergent strategies for the Choquet game, proving the following results. A T₁ space X is the open continuous image of a complete metric space if and only if Nonempty has a convergent winning strategy in the Choquet game on X. A T₁ space X is the open continuous compact image of a metric space if and only if X is metacompact and Nonempty has a stationary convergent strategy in the Choquet game on X. A T₁ space X is the open continuous compact image of a complete metric space if and only if X is metacompact and Nonempty has a stationary convergent winning strategy in the Choquet game on X.

How to cite

top

François G. Dorais, and Carl Mummert. "Stationary and convergent strategies in Choquet games." Fundamenta Mathematicae 209.1 (2010): 59-79. <http://eudml.org/doc/286389>.

@article{FrançoisG2010,
abstract = { If Nonempty has a winning strategy against Empty in the Choquet game on a space, the space is said to be a Choquet space. Such a winning strategy allows Nonempty to consider the entire finite history of previous moves before making each new move; a stationary strategy only permits Nonempty to consider the previous move by Empty. We show that Nonempty has a stationary winning strategy for every second-countable T₁ Choquet space. More generally, Nonempty has a stationary winning strategy for any T₁ Choquet space with an open-finite basis. We also study convergent strategies for the Choquet game, proving the following results. A T₁ space X is the open continuous image of a complete metric space if and only if Nonempty has a convergent winning strategy in the Choquet game on X. A T₁ space X is the open continuous compact image of a metric space if and only if X is metacompact and Nonempty has a stationary convergent strategy in the Choquet game on X. A T₁ space X is the open continuous compact image of a complete metric space if and only if X is metacompact and Nonempty has a stationary convergent winning strategy in the Choquet game on X. },
author = {François G. Dorais, Carl Mummert},
journal = {Fundamenta Mathematicae},
keywords = {Choquet game; stationary strategy; convergent strategy; open-finite base},
language = {eng},
number = {1},
pages = {59-79},
title = {Stationary and convergent strategies in Choquet games},
url = {http://eudml.org/doc/286389},
volume = {209},
year = {2010},
}

TY - JOUR
AU - François G. Dorais
AU - Carl Mummert
TI - Stationary and convergent strategies in Choquet games
JO - Fundamenta Mathematicae
PY - 2010
VL - 209
IS - 1
SP - 59
EP - 79
AB - If Nonempty has a winning strategy against Empty in the Choquet game on a space, the space is said to be a Choquet space. Such a winning strategy allows Nonempty to consider the entire finite history of previous moves before making each new move; a stationary strategy only permits Nonempty to consider the previous move by Empty. We show that Nonempty has a stationary winning strategy for every second-countable T₁ Choquet space. More generally, Nonempty has a stationary winning strategy for any T₁ Choquet space with an open-finite basis. We also study convergent strategies for the Choquet game, proving the following results. A T₁ space X is the open continuous image of a complete metric space if and only if Nonempty has a convergent winning strategy in the Choquet game on X. A T₁ space X is the open continuous compact image of a metric space if and only if X is metacompact and Nonempty has a stationary convergent strategy in the Choquet game on X. A T₁ space X is the open continuous compact image of a complete metric space if and only if X is metacompact and Nonempty has a stationary convergent winning strategy in the Choquet game on X.
LA - eng
KW - Choquet game; stationary strategy; convergent strategy; open-finite base
UR - http://eudml.org/doc/286389
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.