top
L. Makar-Limanov, P. van Rossum, V. Shpilrain and J.-T. Yu solved the stable equivalence problem for the polynomial ring k[x,y] when k is a field of characteristic 0. In this note we give an affirmative solution for an arbitrary field k.
Robert Dryło. "On the stable equivalence problem for k[x,y]." Colloquium Mathematicae 124.2 (2011): 247-253. <http://eudml.org/doc/286410>.
@article{RobertDryło2011, abstract = {L. Makar-Limanov, P. van Rossum, V. Shpilrain and J.-T. Yu solved the stable equivalence problem for the polynomial ring k[x,y] when k is a field of characteristic 0. In this note we give an affirmative solution for an arbitrary field k.}, author = {Robert Dryło}, journal = {Colloquium Mathematicae}, keywords = {polynomial automorphisms; stable equivalence; locally nilpotent derivation; makar-limanov invariant}, language = {eng}, number = {2}, pages = {247-253}, title = {On the stable equivalence problem for k[x,y]}, url = {http://eudml.org/doc/286410}, volume = {124}, year = {2011}, }
TY - JOUR AU - Robert Dryło TI - On the stable equivalence problem for k[x,y] JO - Colloquium Mathematicae PY - 2011 VL - 124 IS - 2 SP - 247 EP - 253 AB - L. Makar-Limanov, P. van Rossum, V. Shpilrain and J.-T. Yu solved the stable equivalence problem for the polynomial ring k[x,y] when k is a field of characteristic 0. In this note we give an affirmative solution for an arbitrary field k. LA - eng KW - polynomial automorphisms; stable equivalence; locally nilpotent derivation; makar-limanov invariant UR - http://eudml.org/doc/286410 ER -