top
Let χ be a primitive Dirichlet character of conductor q and denote by L(z,χ) the associated L-series. We provide an explicit upper bound for |L(1,χ)| when 3 divides q.
David J. Platt, and Sumaia Saad Eddin. "Explicit upper bounds for |L(1,χ)| when χ(3) = 0." Colloquium Mathematicae 133.1 (2013): 23-34. <http://eudml.org/doc/286472>.
@article{DavidJ2013, abstract = {Let χ be a primitive Dirichlet character of conductor q and denote by L(z,χ) the associated L-series. We provide an explicit upper bound for |L(1,χ)| when 3 divides q.}, author = {David J. Platt, Sumaia Saad Eddin}, journal = {Colloquium Mathematicae}, keywords = {Dirichlet character; Dirichlet L-function; Gauss sum}, language = {eng}, number = {1}, pages = {23-34}, title = {Explicit upper bounds for |L(1,χ)| when χ(3) = 0}, url = {http://eudml.org/doc/286472}, volume = {133}, year = {2013}, }
TY - JOUR AU - David J. Platt AU - Sumaia Saad Eddin TI - Explicit upper bounds for |L(1,χ)| when χ(3) = 0 JO - Colloquium Mathematicae PY - 2013 VL - 133 IS - 1 SP - 23 EP - 34 AB - Let χ be a primitive Dirichlet character of conductor q and denote by L(z,χ) the associated L-series. We provide an explicit upper bound for |L(1,χ)| when 3 divides q. LA - eng KW - Dirichlet character; Dirichlet L-function; Gauss sum UR - http://eudml.org/doc/286472 ER -