Explicit upper bounds for |L(1,χ)| when χ(3) = 0
David J. Platt; Sumaia Saad Eddin
Colloquium Mathematicae (2013)
- Volume: 133, Issue: 1, page 23-34
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topDavid J. Platt, and Sumaia Saad Eddin. "Explicit upper bounds for |L(1,χ)| when χ(3) = 0." Colloquium Mathematicae 133.1 (2013): 23-34. <http://eudml.org/doc/286472>.
@article{DavidJ2013,
abstract = {Let χ be a primitive Dirichlet character of conductor q and denote by L(z,χ) the associated L-series. We provide an explicit upper bound for |L(1,χ)| when 3 divides q.},
author = {David J. Platt, Sumaia Saad Eddin},
journal = {Colloquium Mathematicae},
keywords = {Dirichlet character; Dirichlet L-function; Gauss sum},
language = {eng},
number = {1},
pages = {23-34},
title = {Explicit upper bounds for |L(1,χ)| when χ(3) = 0},
url = {http://eudml.org/doc/286472},
volume = {133},
year = {2013},
}
TY - JOUR
AU - David J. Platt
AU - Sumaia Saad Eddin
TI - Explicit upper bounds for |L(1,χ)| when χ(3) = 0
JO - Colloquium Mathematicae
PY - 2013
VL - 133
IS - 1
SP - 23
EP - 34
AB - Let χ be a primitive Dirichlet character of conductor q and denote by L(z,χ) the associated L-series. We provide an explicit upper bound for |L(1,χ)| when 3 divides q.
LA - eng
KW - Dirichlet character; Dirichlet L-function; Gauss sum
UR - http://eudml.org/doc/286472
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.