Some critical almost Kähler structures
Colloquium Mathematicae (2008)
- Volume: 111, Issue: 2, page 205-212
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topTakashi Oguro, and Kouei Sekigawa. "Some critical almost Kähler structures." Colloquium Mathematicae 111.2 (2008): 205-212. <http://eudml.org/doc/286508>.
@article{TakashiOguro2008,
	abstract = {We consider the set of all almost Kähler structures (g,J) on a 2n-dimensional compact orientable manifold M and study a critical point of the functional $ℱ_\{λ,μ\}(J,g) = ∫_\{M\} (λτ + μτ*)dM_\{g\}$ with respect to the scalar curvature τ and the *-scalar curvature τ*. We show that an almost Kähler structure (J,g) is a critical point of $ℱ_\{-1,1\}$ if and only if (J,g) is a Kähler structure on M.},
	author = {Takashi Oguro, Kouei Sekigawa},
	journal = {Colloquium Mathematicae},
	keywords = {almost Kähler manifold; Kähler manifold},
	language = {eng},
	number = {2},
	pages = {205-212},
	title = {Some critical almost Kähler structures},
	url = {http://eudml.org/doc/286508},
	volume = {111},
	year = {2008},
}
TY  - JOUR
AU  - Takashi Oguro
AU  - Kouei Sekigawa
TI  - Some critical almost Kähler structures
JO  - Colloquium Mathematicae
PY  - 2008
VL  - 111
IS  - 2
SP  - 205
EP  - 212
AB  - We consider the set of all almost Kähler structures (g,J) on a 2n-dimensional compact orientable manifold M and study a critical point of the functional $ℱ_{λ,μ}(J,g) = ∫_{M} (λτ + μτ*)dM_{g}$ with respect to the scalar curvature τ and the *-scalar curvature τ*. We show that an almost Kähler structure (J,g) is a critical point of $ℱ_{-1,1}$ if and only if (J,g) is a Kähler structure on M.
LA  - eng
KW  - almost Kähler manifold; Kähler manifold
UR  - http://eudml.org/doc/286508
ER  - 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 