Some critical almost Kähler structures
Colloquium Mathematicae (2008)
- Volume: 111, Issue: 2, page 205-212
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topTakashi Oguro, and Kouei Sekigawa. "Some critical almost Kähler structures." Colloquium Mathematicae 111.2 (2008): 205-212. <http://eudml.org/doc/286508>.
@article{TakashiOguro2008,
abstract = {We consider the set of all almost Kähler structures (g,J) on a 2n-dimensional compact orientable manifold M and study a critical point of the functional $ℱ_\{λ,μ\}(J,g) = ∫_\{M\} (λτ + μτ*)dM_\{g\}$ with respect to the scalar curvature τ and the *-scalar curvature τ*. We show that an almost Kähler structure (J,g) is a critical point of $ℱ_\{-1,1\}$ if and only if (J,g) is a Kähler structure on M.},
author = {Takashi Oguro, Kouei Sekigawa},
journal = {Colloquium Mathematicae},
keywords = {almost Kähler manifold; Kähler manifold},
language = {eng},
number = {2},
pages = {205-212},
title = {Some critical almost Kähler structures},
url = {http://eudml.org/doc/286508},
volume = {111},
year = {2008},
}
TY - JOUR
AU - Takashi Oguro
AU - Kouei Sekigawa
TI - Some critical almost Kähler structures
JO - Colloquium Mathematicae
PY - 2008
VL - 111
IS - 2
SP - 205
EP - 212
AB - We consider the set of all almost Kähler structures (g,J) on a 2n-dimensional compact orientable manifold M and study a critical point of the functional $ℱ_{λ,μ}(J,g) = ∫_{M} (λτ + μτ*)dM_{g}$ with respect to the scalar curvature τ and the *-scalar curvature τ*. We show that an almost Kähler structure (J,g) is a critical point of $ℱ_{-1,1}$ if and only if (J,g) is a Kähler structure on M.
LA - eng
KW - almost Kähler manifold; Kähler manifold
UR - http://eudml.org/doc/286508
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.