Robin functions and extremal functions
T. Bloom; N. Levenberg; S. Ma'u
Annales Polonici Mathematici (2003)
- Volume: 80, Issue: 1, page 55-84
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topT. Bloom, N. Levenberg, and S. Ma'u. "Robin functions and extremal functions." Annales Polonici Mathematici 80.1 (2003): 55-84. <http://eudml.org/doc/286634>.
@article{T2003,
abstract = {Given a compact set $K ⊂ ℂ^\{N\}$, for each positive integer n, let
$V^\{(n)\}(z)$ = $V^\{(n)\}_\{K\}(z)$ := sup$1/(deg p) V_\{p(K)\}(p(z))$: p holomorphic polynomial, 1 ≤ deg p ≤ n.
These “extremal-like” functions $V^\{(n)\}_\{K\}$ are essentially one-variable in nature and always increase to the “true” several-variable (Siciak) extremal function,
$V_\{K\}(z)$:= max[0, sup1/(deg p) log|p(z)|: p holomorphic polynomial, $||p||_\{K\} ≤ 1$].
Our main result is that if K is regular, then all of the functions $V^\{(n)\}_\{K\}$ are continuous; and their associated Robin functions
$ϱ_\{V^\{(n)\}_\{K\}\}(z) := limsup_\{|λ|→∞\} [V^\{(n)\}_\{K\}(λz) - log(|λ|)]$
increase to $ϱ_\{K\} := ϱ_\{V_\{K\}\}$ for all z outside a pluripolar set.},
author = {T. Bloom, N. Levenberg, S. Ma'u},
journal = {Annales Polonici Mathematici},
keywords = {plurisubharmonic function; extremal function; Robin function},
language = {eng},
number = {1},
pages = {55-84},
title = {Robin functions and extremal functions},
url = {http://eudml.org/doc/286634},
volume = {80},
year = {2003},
}
TY - JOUR
AU - T. Bloom
AU - N. Levenberg
AU - S. Ma'u
TI - Robin functions and extremal functions
JO - Annales Polonici Mathematici
PY - 2003
VL - 80
IS - 1
SP - 55
EP - 84
AB - Given a compact set $K ⊂ ℂ^{N}$, for each positive integer n, let
$V^{(n)}(z)$ = $V^{(n)}_{K}(z)$ := sup$1/(deg p) V_{p(K)}(p(z))$: p holomorphic polynomial, 1 ≤ deg p ≤ n.
These “extremal-like” functions $V^{(n)}_{K}$ are essentially one-variable in nature and always increase to the “true” several-variable (Siciak) extremal function,
$V_{K}(z)$:= max[0, sup1/(deg p) log|p(z)|: p holomorphic polynomial, $||p||_{K} ≤ 1$].
Our main result is that if K is regular, then all of the functions $V^{(n)}_{K}$ are continuous; and their associated Robin functions
$ϱ_{V^{(n)}_{K}}(z) := limsup_{|λ|→∞} [V^{(n)}_{K}(λz) - log(|λ|)]$
increase to $ϱ_{K} := ϱ_{V_{K}}$ for all z outside a pluripolar set.
LA - eng
KW - plurisubharmonic function; extremal function; Robin function
UR - http://eudml.org/doc/286634
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.