Robin functions and extremal functions

T. Bloom; N. Levenberg; S. Ma'u

Annales Polonici Mathematici (2003)

  • Volume: 80, Issue: 1, page 55-84
  • ISSN: 0066-2216

Abstract

top
Given a compact set K N , for each positive integer n, let V ( n ) ( z ) = V K ( n ) ( z ) := sup 1 / ( d e g p ) V p ( K ) ( p ( z ) ) : p holomorphic polynomial, 1 ≤ deg p ≤ n. These “extremal-like” functions V K ( n ) are essentially one-variable in nature and always increase to the “true” several-variable (Siciak) extremal function, V K ( z ) := max[0, sup1/(deg p) log|p(z)|: p holomorphic polynomial, | | p | | K 1 ]. Our main result is that if K is regular, then all of the functions V K ( n ) are continuous; and their associated Robin functions ϱ V K ( n ) ( z ) : = l i m s u p | λ | [ V K ( n ) ( λ z ) - l o g ( | λ | ) ] increase to ϱ K : = ϱ V K for all z outside a pluripolar set.

How to cite

top

T. Bloom, N. Levenberg, and S. Ma'u. "Robin functions and extremal functions." Annales Polonici Mathematici 80.1 (2003): 55-84. <http://eudml.org/doc/286634>.

@article{T2003,
abstract = {Given a compact set $K ⊂ ℂ^\{N\}$, for each positive integer n, let $V^\{(n)\}(z)$ = $V^\{(n)\}_\{K\}(z)$ := sup$1/(deg p) V_\{p(K)\}(p(z))$: p holomorphic polynomial, 1 ≤ deg p ≤ n. These “extremal-like” functions $V^\{(n)\}_\{K\}$ are essentially one-variable in nature and always increase to the “true” several-variable (Siciak) extremal function, $V_\{K\}(z)$:= max[0, sup1/(deg p) log|p(z)|: p holomorphic polynomial, $||p||_\{K\} ≤ 1$]. Our main result is that if K is regular, then all of the functions $V^\{(n)\}_\{K\}$ are continuous; and their associated Robin functions $ϱ_\{V^\{(n)\}_\{K\}\}(z) := limsup_\{|λ|→∞\} [V^\{(n)\}_\{K\}(λz) - log(|λ|)]$ increase to $ϱ_\{K\} := ϱ_\{V_\{K\}\}$ for all z outside a pluripolar set.},
author = {T. Bloom, N. Levenberg, S. Ma'u},
journal = {Annales Polonici Mathematici},
keywords = {plurisubharmonic function; extremal function; Robin function},
language = {eng},
number = {1},
pages = {55-84},
title = {Robin functions and extremal functions},
url = {http://eudml.org/doc/286634},
volume = {80},
year = {2003},
}

TY - JOUR
AU - T. Bloom
AU - N. Levenberg
AU - S. Ma'u
TI - Robin functions and extremal functions
JO - Annales Polonici Mathematici
PY - 2003
VL - 80
IS - 1
SP - 55
EP - 84
AB - Given a compact set $K ⊂ ℂ^{N}$, for each positive integer n, let $V^{(n)}(z)$ = $V^{(n)}_{K}(z)$ := sup$1/(deg p) V_{p(K)}(p(z))$: p holomorphic polynomial, 1 ≤ deg p ≤ n. These “extremal-like” functions $V^{(n)}_{K}$ are essentially one-variable in nature and always increase to the “true” several-variable (Siciak) extremal function, $V_{K}(z)$:= max[0, sup1/(deg p) log|p(z)|: p holomorphic polynomial, $||p||_{K} ≤ 1$]. Our main result is that if K is regular, then all of the functions $V^{(n)}_{K}$ are continuous; and their associated Robin functions $ϱ_{V^{(n)}_{K}}(z) := limsup_{|λ|→∞} [V^{(n)}_{K}(λz) - log(|λ|)]$ increase to $ϱ_{K} := ϱ_{V_{K}}$ for all z outside a pluripolar set.
LA - eng
KW - plurisubharmonic function; extremal function; Robin function
UR - http://eudml.org/doc/286634
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.