Dual spaces to Orlicz-Lorentz spaces
Anna Kamińska; Karol Leśnik; Yves Raynaud
Studia Mathematica (2014)
- Volume: 222, Issue: 3, page 229-261
 - ISSN: 0039-3223
 
Access Full Article
topAbstract
topHow to cite
topAnna Kamińska, Karol Leśnik, and Yves Raynaud. "Dual spaces to Orlicz-Lorentz spaces." Studia Mathematica 222.3 (2014): 229-261. <http://eudml.org/doc/286639>.
@article{AnnaKamińska2014,
	abstract = {For an Orlicz function φ and a decreasing weight w, two intrinsic exact descriptions are presented for the norm in the Köthe dual of the Orlicz-Lorentz function space $Λ_\{φ,w\}$ or the sequence space $λ_\{φ,w\}$, equipped with either the Luxemburg or Amemiya norms. The first description is via the modular $inf\{∫ φ⁎(f*/|g|)|g|: g ≺ w\}$, where f* is the decreasing rearrangement of f, ≺ denotes submajorization, and φ⁎ is the complementary function to φ. The second description is in terms of the modular $∫_\{I\} φ⁎((f*)⁰/w)w$,where (f*)⁰ is Halperin’s level function of f* with respect to w. That these two descriptions are equivalent results from the identity $inf\{ ∫ ψ(f*/|g|)|g|: g ≺ w\} = ∫_\{I\} ψ((f*)⁰/w)w$, valid for any measurable function f and any Orlicz function ψ. An analogous identity and dual representations are also presented for sequence spaces.},
	author = {Anna Kamińska, Karol Leśnik, Yves Raynaud},
	journal = {Studia Mathematica},
	keywords = {Orlicz-Lorentz spaces; Lorentz spaces; dual spaces; level function; Calderón-Lozanovskii spaces; r.i. spaces},
	language = {eng},
	number = {3},
	pages = {229-261},
	title = {Dual spaces to Orlicz-Lorentz spaces},
	url = {http://eudml.org/doc/286639},
	volume = {222},
	year = {2014},
}
TY  - JOUR
AU  - Anna Kamińska
AU  - Karol Leśnik
AU  - Yves Raynaud
TI  - Dual spaces to Orlicz-Lorentz spaces
JO  - Studia Mathematica
PY  - 2014
VL  - 222
IS  - 3
SP  - 229
EP  - 261
AB  - For an Orlicz function φ and a decreasing weight w, two intrinsic exact descriptions are presented for the norm in the Köthe dual of the Orlicz-Lorentz function space $Λ_{φ,w}$ or the sequence space $λ_{φ,w}$, equipped with either the Luxemburg or Amemiya norms. The first description is via the modular $inf{∫ φ⁎(f*/|g|)|g|: g ≺ w}$, where f* is the decreasing rearrangement of f, ≺ denotes submajorization, and φ⁎ is the complementary function to φ. The second description is in terms of the modular $∫_{I} φ⁎((f*)⁰/w)w$,where (f*)⁰ is Halperin’s level function of f* with respect to w. That these two descriptions are equivalent results from the identity $inf{ ∫ ψ(f*/|g|)|g|: g ≺ w} = ∫_{I} ψ((f*)⁰/w)w$, valid for any measurable function f and any Orlicz function ψ. An analogous identity and dual representations are also presented for sequence spaces.
LA  - eng
KW  - Orlicz-Lorentz spaces; Lorentz spaces; dual spaces; level function; Calderón-Lozanovskii spaces; r.i. spaces
UR  - http://eudml.org/doc/286639
ER  - 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.