A remark on extrapolation of rearrangement operators on dyadic , 0 < s ≤ 1
Stefan Geiss; Paul F. X. Müller; Veronika Pillwein
Studia Mathematica (2005)
- Volume: 171, Issue: 2, page 196-205
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topStefan Geiss, Paul F. X. Müller, and Veronika Pillwein. "A remark on extrapolation of rearrangement operators on dyadic $H^{s}$, 0 < s ≤ 1." Studia Mathematica 171.2 (2005): 196-205. <http://eudml.org/doc/286642>.
@article{StefanGeiss2005,
abstract = {For an injective map τ acting on the dyadic subintervals of the unit interval [0,1) we define the rearrangement operator $T_\{s\}$, 0 < s < 2, to be the linear extension of the map
$(h_\{I\})/(|I|^\{1/s\}) ↦ (h_\{τ(I)\})(|τ(I)|^\{1/s\})$,
where $h_\{I\}$ denotes the $L^\{∞\}$-normalized Haar function supported on the dyadic interval I. We prove the following extrapolation result: If there exists at least one 0 < s₀ < 2 such that $T_\{s₀\}$ is bounded on $H^\{s₀\}$, then for all 0 < s < 2 the operator $T_\{s\}$ is bounded on $H^\{s\}$.},
author = {Stefan Geiss, Paul F. X. Müller, Veronika Pillwein},
journal = {Studia Mathematica},
keywords = {rearrangement operator; dyadic Hardy space; extrapolation},
language = {eng},
number = {2},
pages = {196-205},
title = {A remark on extrapolation of rearrangement operators on dyadic $H^\{s\}$, 0 < s ≤ 1},
url = {http://eudml.org/doc/286642},
volume = {171},
year = {2005},
}
TY - JOUR
AU - Stefan Geiss
AU - Paul F. X. Müller
AU - Veronika Pillwein
TI - A remark on extrapolation of rearrangement operators on dyadic $H^{s}$, 0 < s ≤ 1
JO - Studia Mathematica
PY - 2005
VL - 171
IS - 2
SP - 196
EP - 205
AB - For an injective map τ acting on the dyadic subintervals of the unit interval [0,1) we define the rearrangement operator $T_{s}$, 0 < s < 2, to be the linear extension of the map
$(h_{I})/(|I|^{1/s}) ↦ (h_{τ(I)})(|τ(I)|^{1/s})$,
where $h_{I}$ denotes the $L^{∞}$-normalized Haar function supported on the dyadic interval I. We prove the following extrapolation result: If there exists at least one 0 < s₀ < 2 such that $T_{s₀}$ is bounded on $H^{s₀}$, then for all 0 < s < 2 the operator $T_{s}$ is bounded on $H^{s}$.
LA - eng
KW - rearrangement operator; dyadic Hardy space; extrapolation
UR - http://eudml.org/doc/286642
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.