Two new estimates for eigenvalues of Dirac operators
Annales Polonici Mathematici (2016)
- Volume: 117, Issue: 2, page 109-126
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topWenmin Gong, and Guangcun Lu. "Two new estimates for eigenvalues of Dirac operators." Annales Polonici Mathematici 117.2 (2016): 109-126. <http://eudml.org/doc/286680>.
@article{WenminGong2016,
abstract = {We establish lower and upper eigenvalue estimates for Dirac operators in different settings, a new Kirchberg type estimate for the first eigenvalue of the Dirac operator on a compact Kähler spin manifold in terms of the energy momentum tensor, and an upper bound for the smallest eigenvalues of the twisted Dirac operator on Legendrian submanifolds of Sasakian manifolds. The sharpness of those estimates is also discussed.},
author = {Wenmin Gong, Guangcun Lu},
journal = {Annales Polonici Mathematici},
keywords = {Dirac operator; eigenvalue estimate; Legendrian submanifolds},
language = {eng},
number = {2},
pages = {109-126},
title = {Two new estimates for eigenvalues of Dirac operators},
url = {http://eudml.org/doc/286680},
volume = {117},
year = {2016},
}
TY - JOUR
AU - Wenmin Gong
AU - Guangcun Lu
TI - Two new estimates for eigenvalues of Dirac operators
JO - Annales Polonici Mathematici
PY - 2016
VL - 117
IS - 2
SP - 109
EP - 126
AB - We establish lower and upper eigenvalue estimates for Dirac operators in different settings, a new Kirchberg type estimate for the first eigenvalue of the Dirac operator on a compact Kähler spin manifold in terms of the energy momentum tensor, and an upper bound for the smallest eigenvalues of the twisted Dirac operator on Legendrian submanifolds of Sasakian manifolds. The sharpness of those estimates is also discussed.
LA - eng
KW - Dirac operator; eigenvalue estimate; Legendrian submanifolds
UR - http://eudml.org/doc/286680
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.