Estimation of a smoothness parameter by spline wavelets

Magdalena Meller; Natalia Jarzębkowska

Applicationes Mathematicae (2013)

  • Volume: 40, Issue: 3, page 309-326
  • ISSN: 1233-7234

Abstract

top
We consider the smoothness parameter of a function f ∈ L²(ℝ) in terms of Besov spaces B 2 , s ( ) , s * ( f ) = s u p s > 0 : f B 2 , s ( ) . The existing results on estimation of smoothness [K. Dziedziul, M. Kucharska and B. Wolnik, J. Nonparametric Statist. 23 (2011)] employ the Haar basis and are limited to the case 0 < s*(f) < 1/2. Using p-regular (p ≥ 1) spline wavelets with exponential decay we extend them to density functions with 0 < s*(f) < p+1/2. Applying the Franklin-Strömberg wavelet p = 1, we prove that the presented estimator of s*(f) is consistent for piecewise constant functions. Furthermore, we show that the results for the Franklin-Strömberg wavelet can be generalised to any spline wavelet (p ≥ 1).

How to cite

top

Magdalena Meller, and Natalia Jarzębkowska. "Estimation of a smoothness parameter by spline wavelets." Applicationes Mathematicae 40.3 (2013): 309-326. <http://eudml.org/doc/286689>.

@article{MagdalenaMeller2013,
abstract = {We consider the smoothness parameter of a function f ∈ L²(ℝ) in terms of Besov spaces $B^\{s\}_\{2,∞\}(ℝ)$, $s*(f) = sup\{s > 0: f ∈ B^\{s\}_\{2,∞\}(ℝ)\}$. The existing results on estimation of smoothness [K. Dziedziul, M. Kucharska and B. Wolnik, J. Nonparametric Statist. 23 (2011)] employ the Haar basis and are limited to the case 0 < s*(f) < 1/2. Using p-regular (p ≥ 1) spline wavelets with exponential decay we extend them to density functions with 0 < s*(f) < p+1/2. Applying the Franklin-Strömberg wavelet p = 1, we prove that the presented estimator of s*(f) is consistent for piecewise constant functions. Furthermore, we show that the results for the Franklin-Strömberg wavelet can be generalised to any spline wavelet (p ≥ 1).},
author = {Magdalena Meller, Natalia Jarzębkowska},
journal = {Applicationes Mathematicae},
keywords = {estimation; Besov spaces; smoothness parameter; franklin- strömberg wavelet; spline wavelets},
language = {eng},
number = {3},
pages = {309-326},
title = {Estimation of a smoothness parameter by spline wavelets},
url = {http://eudml.org/doc/286689},
volume = {40},
year = {2013},
}

TY - JOUR
AU - Magdalena Meller
AU - Natalia Jarzębkowska
TI - Estimation of a smoothness parameter by spline wavelets
JO - Applicationes Mathematicae
PY - 2013
VL - 40
IS - 3
SP - 309
EP - 326
AB - We consider the smoothness parameter of a function f ∈ L²(ℝ) in terms of Besov spaces $B^{s}_{2,∞}(ℝ)$, $s*(f) = sup{s > 0: f ∈ B^{s}_{2,∞}(ℝ)}$. The existing results on estimation of smoothness [K. Dziedziul, M. Kucharska and B. Wolnik, J. Nonparametric Statist. 23 (2011)] employ the Haar basis and are limited to the case 0 < s*(f) < 1/2. Using p-regular (p ≥ 1) spline wavelets with exponential decay we extend them to density functions with 0 < s*(f) < p+1/2. Applying the Franklin-Strömberg wavelet p = 1, we prove that the presented estimator of s*(f) is consistent for piecewise constant functions. Furthermore, we show that the results for the Franklin-Strömberg wavelet can be generalised to any spline wavelet (p ≥ 1).
LA - eng
KW - estimation; Besov spaces; smoothness parameter; franklin- strömberg wavelet; spline wavelets
UR - http://eudml.org/doc/286689
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.