Integrals of logarithmic and hypergeometric functions
Communications in Mathematics (2016)
- Volume: 24, Issue: 1, page 7-22
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topSofo, Anthony. "Integrals of logarithmic and hypergeometric functions." Communications in Mathematics 24.1 (2016): 7-22. <http://eudml.org/doc/286696>.
@article{Sofo2016,
abstract = {Integrals of logarithmic and hypergeometric functions are intrinsically connected with Euler sums. In this paper we explore many relations and explicitly derive closed form representations of integrals of logarithmic, hypergeometric functions and the Lerch phi transcendent in terms of zeta functions and sums of alternating harmonic numbers.},
author = {Sofo, Anthony},
journal = {Communications in Mathematics},
keywords = {Logarithm function; Hypergeometric functions; Integral representation; Lerch transcendent function; Alternating harmonic numbers; Combinatorial series identities; Summation formulas; Partial fraction approach; Binomial coefficients},
language = {eng},
number = {1},
pages = {7-22},
publisher = {University of Ostrava},
title = {Integrals of logarithmic and hypergeometric functions},
url = {http://eudml.org/doc/286696},
volume = {24},
year = {2016},
}
TY - JOUR
AU - Sofo, Anthony
TI - Integrals of logarithmic and hypergeometric functions
JO - Communications in Mathematics
PY - 2016
PB - University of Ostrava
VL - 24
IS - 1
SP - 7
EP - 22
AB - Integrals of logarithmic and hypergeometric functions are intrinsically connected with Euler sums. In this paper we explore many relations and explicitly derive closed form representations of integrals of logarithmic, hypergeometric functions and the Lerch phi transcendent in terms of zeta functions and sums of alternating harmonic numbers.
LA - eng
KW - Logarithm function; Hypergeometric functions; Integral representation; Lerch transcendent function; Alternating harmonic numbers; Combinatorial series identities; Summation formulas; Partial fraction approach; Binomial coefficients
UR - http://eudml.org/doc/286696
ER -
References
top- Adamchik, V., Srivastava, H. M., 10.1524/anly.1998.18.2.131, Analysis, 18, 2, 1998, 131-144, (1998) Zbl0919.11056MR1625172DOI10.1524/anly.1998.18.2.131
- Borwein, J. M., Zucker, I. J., Boersma, J., 10.1007/s11139-007-9083-z, Ramanujan J., 15, 2008, 377-405, (2008) Zbl1241.11108MR2390277DOI10.1007/s11139-007-9083-z
- Choi, J., 10.5831/HMJ.2013.35.2.137, Honam Mathematical J, 35, 2, 2013, 137-146, (2013) Zbl1278.33002MR3112095DOI10.5831/HMJ.2013.35.2.137
- Choi, J., Cvijoviæ, D., 10.1088/1751-8113/40/50/007, J. Phys. A: Math. Theor., 40, 50, 2007, 15019-15028, Corrigendum, ibidem, 43 (2010), 239801 (1p). (2007) MR2442610DOI10.1088/1751-8113/40/50/007
- Choi, J., Finite summation formulas involving binomial coefficients, harmonic numbers and generalized harmonic numbers, J. Inequal. Appl., 49, 2013, 1-11, (2013) Zbl1283.11115MR3031578
- Choi, J., Srivastava, H. M., 10.1016/j.mcm.2011.05.032, Math. Comput. Modelling., 54, 2011, 2220-2234, (2011) Zbl1235.33006MR2834625DOI10.1016/j.mcm.2011.05.032
- Chu, W., 10.2298/FIL1201143C, Filomat, 26, 1, 2012, 143-152, (2012) Zbl1289.05019MR3086693DOI10.2298/FIL1201143C
- Ciaurri, O., Navas, L. M., Ruiz, F. J., Varano, J. L., 10.4169/amer.math.monthly.122.5.444, Amer. Math. Monthly., 122, 5, 2015, 444-451, (2015) MR3352803DOI10.4169/amer.math.monthly.122.5.444
- Coffey, M. W., Lubbers, N., On generalized harmonic number sums, Appl. Math. Comput., 217, 2010, 689-698, (2010) Zbl1202.33001MR2678582
- Dattoli, G., Srivastava, H. M., 10.1016/j.aml.2007.07.021, Appl. Math. Lett. , 21, 7, 2008, 686-693, (2008) Zbl1152.05306MR2423046DOI10.1016/j.aml.2007.07.021
- Devoto, A., Duke, D. W., Table of integrals and formulae for Feynman diagram calculation, La Rivista del Nuovo Cimento, 7, 6, 1984, 1-39, (1984) MR0781905
- Flajolet, P., Salvy, B., 10.1080/10586458.1998.10504356, Exp. Math., 7, 1, 1998, 15-35, (1998) Zbl0920.11061MR1618286DOI10.1080/10586458.1998.10504356
- Freitas, P., 10.1090/S0025-5718-05-01747-3, Math. Comp., 74, 251, 2005, 1425-1440, (2005) Zbl1086.33019MR2137010DOI10.1090/S0025-5718-05-01747-3
- Kölbig, K., The polygamma function for and , J. Comput. Appl. Math. , 75, 1996, 43-46, (1996) MR1424884
- Liu, H., Wang, W., 10.1080/10652469.2011.553718, Integral Transforms Spec. Funct., 23, 2012, 49-68, (2012) Zbl1269.33006MR2875570DOI10.1080/10652469.2011.553718
- Mez?, I, 10.2140/pjm.2014.272.201, Pacific J. Math. , 272, 1, 2014, 201-226, (2014) MR3270178DOI10.2140/pjm.2014.272.201
- Sitaramachandrarao, R., 10.1016/0022-314X(87)90012-6, J. Number Theory, 25, 1987, 1-19, (1987) Zbl0606.10032MR0871165DOI10.1016/0022-314X(87)90012-6
- Sofo, A., Computational Techniques for the Summation of Series, 2003, Kluwer Academic/Plenum Publishers, New York, (2003) Zbl1059.65002MR2020630
- Sofo, A., Integral identities for sums, Math. Commun., 13, 2, 2008, 303-309, (2008) Zbl1178.05002MR2488679
- Sofo, A., 10.1016/j.aam.2008.07.001, Adv. in Appl. Math., 42, 2009, 123-134, (2009) Zbl1220.11025MR2475317DOI10.1016/j.aam.2008.07.001
- Sofo, A., Integral forms associated with harmonic numbers, Appl. Math. Comput., 207, 2, 2009, 365-372, (2009)
- Sofo, A., Srivastava, H. M., 10.1007/s11139-010-9228-3, Ramanujan J., 25, 1, 2011, 93-113, (2011) Zbl1234.11022MR2787293DOI10.1007/s11139-010-9228-3
- Sofo, A., 10.1007/s10476-011-0103-2, Anal. Math., 37, 1, 2011, 51-64, (2011) Zbl1240.33006MR2784242DOI10.1007/s10476-011-0103-2
- Sofo, A., 10.1016/j.jnt.2015.02.013, J. Number Theory, 154, 2015, 144-159, (2015) Zbl1310.05014MR3339570DOI10.1016/j.jnt.2015.02.013
- Srivastava, H. M., Choi, J., Series Associated with the Zeta and Related Functions, 530, 2001, Kluwer Academic Publishers, London, (2001) Zbl1014.33001MR1849375
- Srivastava, H. M., Choi, J., Zeta and -Zeta Functions and Associated Series and Integrals, 2012, Elsevier Science Publishers, Amsterdam, London and New York, (2012) Zbl1239.33002MR3294573
- Wang, W., Jia, C., 10.1007/s11139-013-9511-1, Ramanujan J., 35, 2, 2014, 263-285, (2014) Zbl1306.05005MR3266481DOI10.1007/s11139-013-9511-1
- Wei, C., Gong, D., 10.1007/s11139-013-9510-2, Ramanujan J., 34, 3, 2014, 361-371, (2014) Zbl1301.33010MR3231317DOI10.1007/s11139-013-9510-2
- Wu, T. C., Tu, S. T., Srivastava, H. M., 10.1016/S0893-9659(99)00193-7, Appl. Math. Lett., 13, 3, 2000, 101-106, (2000) Zbl0953.33001MR1755751DOI10.1016/S0893-9659(99)00193-7
- Zheng, D. Y., 10.1016/j.jmaa.2007.02.002, J. Math. Anal. Appl., 335, 1, 2007, 692-706, (2007) Zbl1115.11054MR2340348DOI10.1016/j.jmaa.2007.02.002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.