Distinguished connections on ( J 2 = ± 1 ) -metric manifolds

Fernando Etayo; Rafael Santamaría

Archivum Mathematicum (2016)

  • Volume: 052, Issue: 3, page 159-203
  • ISSN: 0044-8753

Abstract

top
We study several linear connections (the first canonical, the Chern, the well adapted, the Levi Civita, the Kobayashi-Nomizu, the Yano, the Bismut and those with totally skew-symmetric torsion) which can be defined on the four geometric types of ( J 2 = ± 1 ) -metric manifolds. We characterize when such a connection is adapted to the structure, and obtain a lot of results about coincidence among connections. We prove that the first canonical and the well adapted connections define a one-parameter family of adapted connections, named canonical connections, thus extending to almost Norden and almost product Riemannian manifolds the families introduced in almost Hermitian and almost para-Hermitian manifolds in [13] and [18]. We also prove that every connection studied in this paper is a canonical connection, when it exists and it is an adapted connection.

How to cite

top

Etayo, Fernando, and Santamaría, Rafael. "Distinguished connections on $(J^{2}=\pm 1)$-metric manifolds." Archivum Mathematicum 052.3 (2016): 159-203. <http://eudml.org/doc/286697>.

@article{Etayo2016,
abstract = {We study several linear connections (the first canonical, the Chern, the well adapted, the Levi Civita, the Kobayashi-Nomizu, the Yano, the Bismut and those with totally skew-symmetric torsion) which can be defined on the four geometric types of $(J^2=\pm 1)$-metric manifolds. We characterize when such a connection is adapted to the structure, and obtain a lot of results about coincidence among connections. We prove that the first canonical and the well adapted connections define a one-parameter family of adapted connections, named canonical connections, thus extending to almost Norden and almost product Riemannian manifolds the families introduced in almost Hermitian and almost para-Hermitian manifolds in [13] and [18]. We also prove that every connection studied in this paper is a canonical connection, when it exists and it is an adapted connection.},
author = {Etayo, Fernando, Santamaría, Rafael},
journal = {Archivum Mathematicum},
keywords = {$(J^2=\pm 1)$-metric manifold; $\alpha $-structure; natural connection; Nijenhuis tensor; second Nijenhuis tensor; Kobayashi-Nomizu connection; first canonical connection; well adapted connection; connection with totally skew-symmetric torsion; canonical connection; Riemannian almost product structure; para-Hermitian structure; Hermitian structure; Norden structure; biparacomplex; 3-web},
language = {eng},
number = {3},
pages = {159-203},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Distinguished connections on $(J^\{2\}=\pm 1)$-metric manifolds},
url = {http://eudml.org/doc/286697},
volume = {052},
year = {2016},
}

TY - JOUR
AU - Etayo, Fernando
AU - Santamaría, Rafael
TI - Distinguished connections on $(J^{2}=\pm 1)$-metric manifolds
JO - Archivum Mathematicum
PY - 2016
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 052
IS - 3
SP - 159
EP - 203
AB - We study several linear connections (the first canonical, the Chern, the well adapted, the Levi Civita, the Kobayashi-Nomizu, the Yano, the Bismut and those with totally skew-symmetric torsion) which can be defined on the four geometric types of $(J^2=\pm 1)$-metric manifolds. We characterize when such a connection is adapted to the structure, and obtain a lot of results about coincidence among connections. We prove that the first canonical and the well adapted connections define a one-parameter family of adapted connections, named canonical connections, thus extending to almost Norden and almost product Riemannian manifolds the families introduced in almost Hermitian and almost para-Hermitian manifolds in [13] and [18]. We also prove that every connection studied in this paper is a canonical connection, when it exists and it is an adapted connection.
LA - eng
KW - $(J^2=\pm 1)$-metric manifold; $\alpha $-structure; natural connection; Nijenhuis tensor; second Nijenhuis tensor; Kobayashi-Nomizu connection; first canonical connection; well adapted connection; connection with totally skew-symmetric torsion; canonical connection; Riemannian almost product structure; para-Hermitian structure; Hermitian structure; Norden structure; biparacomplex; 3-web
UR - http://eudml.org/doc/286697
ER -

References

top
  1. Agricola, I., The Srní lectures on non-integrable geometries with torsion, Arch. Math. (Brno) 42 (2006), 5–84. (2006) Zbl1164.53300MR2322400
  2. Bismut, J.M., 10.1007/BF01443359, Math. Ann. 284 (4) (1999), 681–699. DOI: http://dx.doi.org/10.1007/bf01443359 (1999) MR1006380DOI10.1007/BF01443359
  3. Chursin, M., Schäfer, L., Smoczyk, K., 10.1007/s00526-010-0355-x, Calc. Var. 41 (1–2) (2011), 111–125. DOI: http://dx.doi.org/10.1007/s00526-010-0355-x (2011) Zbl1232.53066MR2782799DOI10.1007/s00526-010-0355-x
  4. Cruceanu, V., Etayo, F., On almost para-Hermitian manifolds, Algebras Groups Geom. 16 (1) (1999), 47–61. (1999) Zbl1003.53024MR1704088
  5. Davidov, J., Grantcharov, G., Muškarov, O., 10.1216/RMJ-2009-39-1-27, Rocky Mountain J. Math. 39 (1) (2009), 27–48. DOI: http://dx.doi.org/10.1216/rmj-2009-39-1-27 (2009) Zbl1160.53013MR2476800DOI10.1216/RMJ-2009-39-1-27
  6. Etayo, F., Santamaría, R., ( J 2 = ± 1 ) -metric manifolds, Publ. Math. Debrecen 57 (3–4) (2000), 435–444. (2000) Zbl0973.53025MR1798725
  7. Etayo, F., Santamaría, R., 10.1007/s13398-016-0299-x, RACSAM (2016). DOI: http://dx.doi.org/10.1007/s13398-016-0299-x (2016) DOI10.1007/s13398-016-0299-x
  8. Friedrich, T., Ivanov, S., 10.4310/AJM.2002.v6.n2.a5, Asian J. Math. 6 (2) (2002), 303–335. (2002) Zbl1127.53304MR1928632DOI10.4310/AJM.2002.v6.n2.a5
  9. Gadea, P., Muñoz Masqué, J., Classification of almost para-Hermitian manifolds, Rend. Mat. Appl. (7) 11 (1991), 377–396. (1991) MR1122346
  10. Ganchev, G., Borisov, A.V., Note on the almost complex manifolds with a Norden metric, C. R. Acad. Bulgare Sci. 39 (5) (1986), 31–34. (1986) Zbl0608.53031MR0857345
  11. Ganchev, G., Kassabov, O., 10.2996/kmj/1151936442, Kodai Math. J. 29 (2) (2006), 281–298. DOI: http://dx.doi.org/10.2996/kmj/1151936442 (2006) Zbl1117.53052MR2247437DOI10.2996/kmj/1151936442
  12. Ganchev, G., Mihova, V., Canonical connection and the canonical conformal group on an almost complex manifold with B -metric, Annuaire Univ. Sofia Fac. Math. Inform. 81 (1) (1987), 195–206. (1987) MR1291897
  13. Gauduchon, P., Hermitian connections and Dirac operators, Boll. Un. Mat. Ital. B 7 suppl. 11 (2) (1997), 257–288. (1997) Zbl0876.53015MR1456265
  14. Gover, A. Rod, Nurowski, P., Calculus and invariants on almost complex manifolds, including projective and conformal geometry, Illinois J. Math. 57 (2) (2013), 383–427. (2013) MR3263039
  15. Gray, A., 10.4310/jdg/1214429504, J. Differential Geom. 4 (3) (1970), 283–309. (1970) Zbl0201.54401MR0267502DOI10.4310/jdg/1214429504
  16. Gray, A., Hervella, L.M., 10.1007/BF01796539, Ann. Mat. Pura Appl. 123 (1) (1980), 35–58. DOI: http://dx.doi.org/10.1007/bf01796539 (1980) Zbl0444.53032MR0581924DOI10.1007/BF01796539
  17. Gribacheva, D., Mekerov, D., 10.1007/s00022-011-0098-7, J. Geom. 102 (1–2) (2011), 53–71. DOI: http://dx.doi.org/10.1007/s00022-011-0098-7 (2011) Zbl1243.53011MR2904616DOI10.1007/s00022-011-0098-7
  18. Ivanov, S., Zamkovoy, S., 10.1016/j.difgeo.2005.06.002, Differential Geom. Appl. 23 (2) (2005), 205–234. DOI: http://dx.doi.org/10.1016/j.difgeo.2005.06.002 (2005) MR2158044DOI10.1016/j.difgeo.2005.06.002
  19. Kobayashi, S., Nomizu, K., Foundations of Differential Geometry, vol. I and II, Interscience, N. York, 1963, 1969. (1963) Zbl0119.37502MR0152974
  20. Lichnerowicz, A., Théorie globale des connexions et des groupes d’holonomie, Edizione Cremonese, Roma, 1957 (Reprinted in 1962), English version: Global theory of connections and holonomy groups, Noordhoff, Leyden, 1976. (1957) 
  21. Mekerov, D., 10.1007/s00022-008-2084-2, J. Geom. 89 (1–2) (2008), 119–129. DOI: http://dx.doi.org/10.1007/s00022-008-2084-2 (2008) Zbl1166.53018MR2457026DOI10.1007/s00022-008-2084-2
  22. Mekerov, D., On the geometry of the connection with totally skew-symmetric torsion on almost complex manifolds with Norden metric, C. R. Acad. Bulgare Sci. 63 (1) (2010), 19–28. (2010) Zbl1224.53059MR2654318
  23. Mekerov, D., Manev, M., 10.1142/S021988781250003X, Int. J. Geom. Methods Mod. Phys. 9 (1) (2012), 14. DOI: http://dx.doi.org/10.1142/s021988781250003x (2012) MR2891517DOI10.1142/S021988781250003X
  24. Mihova, V., Canonical connection and the canonical conformal group on a Riemannian almost-product manifold, Serdica Math. J. 15 (1989), 351–358. (1989) Zbl0709.53024MR1054627
  25. Olszak, Z., Four-dimensional para-Hermitian manifold, Tensor (N. S.) 56 (1995), 215–226. (1995) MR1413027
  26. Staikova, M., Gribachev, K., Canonical connections and their conformal invariants on Riemannian almost product manifolds, Serdica Math. J. 18 (1992), 150–161. (1992) Zbl0810.53026MR1224633
  27. Teofilova, M., 10.1142/9789812701763_0026, Contemporary Aspects of Complex Analysis, Differential Geometry and Mathematical Physics (Singapore), World Scientific, 2005, pp. 326–335. DOI: http://dx.doi.org/10.1142/9789812701763_0026 (2005) Zbl1218.53028MR2180572DOI10.1142/9789812701763_0026
  28. Teofilova, M., 10.1142/9789814277723_0026, Trends in Differential Geometry, Complex Analysis and Mathematical Physics (Singapore), World Scientific, 2009, pp. 231–240. DOI: http://dx.doi.org/10.1142/9789814277723_0026 (2009) Zbl1183.53015MR2777640DOI10.1142/9789814277723_0026
  29. Vezzoni, L., 10.2996/kmj/1257948887, Kodai Math. J. 32 (3) (2009), 420–431. DOI: http://dx.doi.org/10.2996/kmj/1257948887 (2009) Zbl1180.53071MR2582009DOI10.2996/kmj/1257948887
  30. Yano, K., 10.2996/kmj/1138844134, Kodai Math. Sem. Rep. 11 (1) (1959), 1–24. DOI: http://dx.doi.org/10.2996/kmj/1138844134 (1959) Zbl0085.16502MR0107275DOI10.2996/kmj/1138844134

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.