Distinguished connections on -metric manifolds
Fernando Etayo; Rafael Santamaría
Archivum Mathematicum (2016)
- Volume: 052, Issue: 3, page 159-203
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topEtayo, Fernando, and Santamaría, Rafael. "Distinguished connections on $(J^{2}=\pm 1)$-metric manifolds." Archivum Mathematicum 052.3 (2016): 159-203. <http://eudml.org/doc/286697>.
@article{Etayo2016,
abstract = {We study several linear connections (the first canonical, the Chern, the well adapted, the Levi Civita, the Kobayashi-Nomizu, the Yano, the Bismut and those with totally skew-symmetric torsion) which can be defined on the four geometric types of $(J^2=\pm 1)$-metric manifolds. We characterize when such a connection is adapted to the structure, and obtain a lot of results about coincidence among connections. We prove that the first canonical and the well adapted connections define a one-parameter family of adapted connections, named canonical connections, thus extending to almost Norden and almost product Riemannian manifolds the families introduced in almost Hermitian and almost para-Hermitian manifolds in [13] and [18]. We also prove that every connection studied in this paper is a canonical connection, when it exists and it is an adapted connection.},
author = {Etayo, Fernando, Santamaría, Rafael},
journal = {Archivum Mathematicum},
keywords = {$(J^2=\pm 1)$-metric manifold; $\alpha $-structure; natural connection; Nijenhuis tensor; second Nijenhuis tensor; Kobayashi-Nomizu connection; first canonical connection; well adapted connection; connection with totally skew-symmetric torsion; canonical connection; Riemannian almost product structure; para-Hermitian structure; Hermitian structure; Norden structure; biparacomplex; 3-web},
language = {eng},
number = {3},
pages = {159-203},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Distinguished connections on $(J^\{2\}=\pm 1)$-metric manifolds},
url = {http://eudml.org/doc/286697},
volume = {052},
year = {2016},
}
TY - JOUR
AU - Etayo, Fernando
AU - Santamaría, Rafael
TI - Distinguished connections on $(J^{2}=\pm 1)$-metric manifolds
JO - Archivum Mathematicum
PY - 2016
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 052
IS - 3
SP - 159
EP - 203
AB - We study several linear connections (the first canonical, the Chern, the well adapted, the Levi Civita, the Kobayashi-Nomizu, the Yano, the Bismut and those with totally skew-symmetric torsion) which can be defined on the four geometric types of $(J^2=\pm 1)$-metric manifolds. We characterize when such a connection is adapted to the structure, and obtain a lot of results about coincidence among connections. We prove that the first canonical and the well adapted connections define a one-parameter family of adapted connections, named canonical connections, thus extending to almost Norden and almost product Riemannian manifolds the families introduced in almost Hermitian and almost para-Hermitian manifolds in [13] and [18]. We also prove that every connection studied in this paper is a canonical connection, when it exists and it is an adapted connection.
LA - eng
KW - $(J^2=\pm 1)$-metric manifold; $\alpha $-structure; natural connection; Nijenhuis tensor; second Nijenhuis tensor; Kobayashi-Nomizu connection; first canonical connection; well adapted connection; connection with totally skew-symmetric torsion; canonical connection; Riemannian almost product structure; para-Hermitian structure; Hermitian structure; Norden structure; biparacomplex; 3-web
UR - http://eudml.org/doc/286697
ER -
References
top- Agricola, I., The Srní lectures on non-integrable geometries with torsion, Arch. Math. (Brno) 42 (2006), 5–84. (2006) Zbl1164.53300MR2322400
- Bismut, J.M., 10.1007/BF01443359, Math. Ann. 284 (4) (1999), 681–699. DOI: http://dx.doi.org/10.1007/bf01443359 (1999) MR1006380DOI10.1007/BF01443359
- Chursin, M., Schäfer, L., Smoczyk, K., 10.1007/s00526-010-0355-x, Calc. Var. 41 (1–2) (2011), 111–125. DOI: http://dx.doi.org/10.1007/s00526-010-0355-x (2011) Zbl1232.53066MR2782799DOI10.1007/s00526-010-0355-x
- Cruceanu, V., Etayo, F., On almost para-Hermitian manifolds, Algebras Groups Geom. 16 (1) (1999), 47–61. (1999) Zbl1003.53024MR1704088
- Davidov, J., Grantcharov, G., Muškarov, O., 10.1216/RMJ-2009-39-1-27, Rocky Mountain J. Math. 39 (1) (2009), 27–48. DOI: http://dx.doi.org/10.1216/rmj-2009-39-1-27 (2009) Zbl1160.53013MR2476800DOI10.1216/RMJ-2009-39-1-27
- Etayo, F., Santamaría, R., -metric manifolds, Publ. Math. Debrecen 57 (3–4) (2000), 435–444. (2000) Zbl0973.53025MR1798725
- Etayo, F., Santamaría, R., 10.1007/s13398-016-0299-x, RACSAM (2016). DOI: http://dx.doi.org/10.1007/s13398-016-0299-x (2016) DOI10.1007/s13398-016-0299-x
- Friedrich, T., Ivanov, S., 10.4310/AJM.2002.v6.n2.a5, Asian J. Math. 6 (2) (2002), 303–335. (2002) Zbl1127.53304MR1928632DOI10.4310/AJM.2002.v6.n2.a5
- Gadea, P., Muñoz Masqué, J., Classification of almost para-Hermitian manifolds, Rend. Mat. Appl. (7) 11 (1991), 377–396. (1991) MR1122346
- Ganchev, G., Borisov, A.V., Note on the almost complex manifolds with a Norden metric, C. R. Acad. Bulgare Sci. 39 (5) (1986), 31–34. (1986) Zbl0608.53031MR0857345
- Ganchev, G., Kassabov, O., 10.2996/kmj/1151936442, Kodai Math. J. 29 (2) (2006), 281–298. DOI: http://dx.doi.org/10.2996/kmj/1151936442 (2006) Zbl1117.53052MR2247437DOI10.2996/kmj/1151936442
- Ganchev, G., Mihova, V., Canonical connection and the canonical conformal group on an almost complex manifold with -metric, Annuaire Univ. Sofia Fac. Math. Inform. 81 (1) (1987), 195–206. (1987) MR1291897
- Gauduchon, P., Hermitian connections and Dirac operators, Boll. Un. Mat. Ital. B 7 suppl. 11 (2) (1997), 257–288. (1997) Zbl0876.53015MR1456265
- Gover, A. Rod, Nurowski, P., Calculus and invariants on almost complex manifolds, including projective and conformal geometry, Illinois J. Math. 57 (2) (2013), 383–427. (2013) MR3263039
- Gray, A., 10.4310/jdg/1214429504, J. Differential Geom. 4 (3) (1970), 283–309. (1970) Zbl0201.54401MR0267502DOI10.4310/jdg/1214429504
- Gray, A., Hervella, L.M., 10.1007/BF01796539, Ann. Mat. Pura Appl. 123 (1) (1980), 35–58. DOI: http://dx.doi.org/10.1007/bf01796539 (1980) Zbl0444.53032MR0581924DOI10.1007/BF01796539
- Gribacheva, D., Mekerov, D., 10.1007/s00022-011-0098-7, J. Geom. 102 (1–2) (2011), 53–71. DOI: http://dx.doi.org/10.1007/s00022-011-0098-7 (2011) Zbl1243.53011MR2904616DOI10.1007/s00022-011-0098-7
- Ivanov, S., Zamkovoy, S., 10.1016/j.difgeo.2005.06.002, Differential Geom. Appl. 23 (2) (2005), 205–234. DOI: http://dx.doi.org/10.1016/j.difgeo.2005.06.002 (2005) MR2158044DOI10.1016/j.difgeo.2005.06.002
- Kobayashi, S., Nomizu, K., Foundations of Differential Geometry, vol. I and II, Interscience, N. York, 1963, 1969. (1963) Zbl0119.37502MR0152974
- Lichnerowicz, A., Théorie globale des connexions et des groupes d’holonomie, Edizione Cremonese, Roma, 1957 (Reprinted in 1962), English version: Global theory of connections and holonomy groups, Noordhoff, Leyden, 1976. (1957)
- Mekerov, D., 10.1007/s00022-008-2084-2, J. Geom. 89 (1–2) (2008), 119–129. DOI: http://dx.doi.org/10.1007/s00022-008-2084-2 (2008) Zbl1166.53018MR2457026DOI10.1007/s00022-008-2084-2
- Mekerov, D., On the geometry of the connection with totally skew-symmetric torsion on almost complex manifolds with Norden metric, C. R. Acad. Bulgare Sci. 63 (1) (2010), 19–28. (2010) Zbl1224.53059MR2654318
- Mekerov, D., Manev, M., 10.1142/S021988781250003X, Int. J. Geom. Methods Mod. Phys. 9 (1) (2012), 14. DOI: http://dx.doi.org/10.1142/s021988781250003x (2012) MR2891517DOI10.1142/S021988781250003X
- Mihova, V., Canonical connection and the canonical conformal group on a Riemannian almost-product manifold, Serdica Math. J. 15 (1989), 351–358. (1989) Zbl0709.53024MR1054627
- Olszak, Z., Four-dimensional para-Hermitian manifold, Tensor (N. S.) 56 (1995), 215–226. (1995) MR1413027
- Staikova, M., Gribachev, K., Canonical connections and their conformal invariants on Riemannian almost product manifolds, Serdica Math. J. 18 (1992), 150–161. (1992) Zbl0810.53026MR1224633
- Teofilova, M., 10.1142/9789812701763_0026, Contemporary Aspects of Complex Analysis, Differential Geometry and Mathematical Physics (Singapore), World Scientific, 2005, pp. 326–335. DOI: http://dx.doi.org/10.1142/9789812701763_0026 (2005) Zbl1218.53028MR2180572DOI10.1142/9789812701763_0026
- Teofilova, M., 10.1142/9789814277723_0026, Trends in Differential Geometry, Complex Analysis and Mathematical Physics (Singapore), World Scientific, 2009, pp. 231–240. DOI: http://dx.doi.org/10.1142/9789814277723_0026 (2009) Zbl1183.53015MR2777640DOI10.1142/9789814277723_0026
- Vezzoni, L., 10.2996/kmj/1257948887, Kodai Math. J. 32 (3) (2009), 420–431. DOI: http://dx.doi.org/10.2996/kmj/1257948887 (2009) Zbl1180.53071MR2582009DOI10.2996/kmj/1257948887
- Yano, K., 10.2996/kmj/1138844134, Kodai Math. Sem. Rep. 11 (1) (1959), 1–24. DOI: http://dx.doi.org/10.2996/kmj/1138844134 (1959) Zbl0085.16502MR0107275DOI10.2996/kmj/1138844134
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.