On Uniqueness Theoremsfor Ricci Tensor
Marina B. Khripunova; Sergey E. Stepanov; Irina I. Tsyganok; Josef Mikeš
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2016)
- Volume: 55, Issue: 1, page 47-52
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topKhripunova, Marina B., et al. "On Uniqueness Theoremsfor Ricci Tensor." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 55.1 (2016): 47-52. <http://eudml.org/doc/286700>.
@article{Khripunova2016,
abstract = {In Riemannian geometry the prescribed Ricci curvature problem is as follows: given a smooth manifold $M$ and a symmetric 2-tensor $r$, construct a metric on $M$ whose Ricci tensor equals $r$. In particular, DeTurck and Koiso proved the following celebrated result: the Ricci curvature uniquely determines the Levi-Civita connection on any compact Einstein manifold with non-negative section curvature. In the present paper we generalize the result of DeTurck and Koiso for a Riemannian manifold with non-negative section curvature. In addition, we extended our result to complete non-compact Riemannian manifolds with nonnegative sectional curvature and with finite total scalar curvature.},
author = {Khripunova, Marina B., Stepanov, Sergey E., Tsyganok, Irina I., Mikeš, Josef},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Uniqueness theorem for Ricci tensor; compact and complete Riemannian manifolds; vanishing theorem},
language = {eng},
number = {1},
pages = {47-52},
publisher = {Palacký University Olomouc},
title = {On Uniqueness Theoremsfor Ricci Tensor},
url = {http://eudml.org/doc/286700},
volume = {55},
year = {2016},
}
TY - JOUR
AU - Khripunova, Marina B.
AU - Stepanov, Sergey E.
AU - Tsyganok, Irina I.
AU - Mikeš, Josef
TI - On Uniqueness Theoremsfor Ricci Tensor
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2016
PB - Palacký University Olomouc
VL - 55
IS - 1
SP - 47
EP - 52
AB - In Riemannian geometry the prescribed Ricci curvature problem is as follows: given a smooth manifold $M$ and a symmetric 2-tensor $r$, construct a metric on $M$ whose Ricci tensor equals $r$. In particular, DeTurck and Koiso proved the following celebrated result: the Ricci curvature uniquely determines the Levi-Civita connection on any compact Einstein manifold with non-negative section curvature. In the present paper we generalize the result of DeTurck and Koiso for a Riemannian manifold with non-negative section curvature. In addition, we extended our result to complete non-compact Riemannian manifolds with nonnegative sectional curvature and with finite total scalar curvature.
LA - eng
KW - Uniqueness theorem for Ricci tensor; compact and complete Riemannian manifolds; vanishing theorem
UR - http://eudml.org/doc/286700
ER -
References
top- DeTurck, D., Koiso, N., Uniqueness and non-existence of metrics with prescribed Ricci curvature, . Annales de l’Institut Henri Poincare (C) Analyse non lineaire 1, 5 (1984), 351–359. (1984) Zbl0556.53026MR0779873
- Hamilton, R. S., The Ricci curvature equation, . Lecture notes: Seminar on nonlinear partial differential equations, Mathematical Sciences Research Institute Publications, Berkeley, 1983, 47–72. (1983) MR0765228
- Becce, A. L., Einstein manifolds, . Springer-Verlag, Berlin–Heidelberg, 1987. (1987) MR0867684
- Eells, J., Sampson, J. H., 10.2307/2373037, . American Journal of Mathematics 86, 1 (1964), 109–160. (1964) Zbl0122.40102MR0164306DOI10.2307/2373037
- Stepanov, S., Tsyganok, I., Vanishing theorems for projective and harmonic mappings, . Journal of Geometry 106, 3 (2015), 640–641. (2015) MR1878047
- Yano, K., Bochner, S., Curvature and Betti numbers, . Princeton Univ. Press, Princeton, 1953. (1953) Zbl0051.39402MR0062505
- Vilms, J., 10.4310/jdg/1214429276, . Journal of Differential Geometry 4, 1 (1970), 73–79. (1970) Zbl0194.52901MR0262984DOI10.4310/jdg/1214429276
- Schoen, R., Yau, S. T., 10.1007/BF02568161, . Commenttarii Mathematici Helvetici 51, 1 (1976), 333–341. (1976) MR0438388DOI10.1007/BF02568161
- Yau, S. T., 10.1512/iumj.1976.25.25051, . Indiana University Mathematics Journal 25, 7 (1976), 659–679. (1976) Zbl0335.53041MR0417452DOI10.1512/iumj.1976.25.25051
- Yau, S. T., Seminar on Differential Geometry, . Annals of Mathematics Studies, 102, Princeton Univ. Press, Princeton, NJ, 1982. (1982) Zbl0471.00020MR0645728
- Berger, M., Ebin, D., 10.4310/jdg/1214429060, . Journal of Differential Geometry 3, 3-4 (1969), 379–392. (1969) MR0266084DOI10.4310/jdg/1214429060
- Pigola, S., Rigoli, M., Setti, A. G., Vanishing and finiteness results in geometric analysis. A generalization of the Bochner technique, . Birkhäuser, Basel, 2008. (2008) Zbl1150.53001MR2401291
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.