On Uniqueness Theoremsfor Ricci Tensor

Marina B. Khripunova; Sergey E. Stepanov; Irina I. Tsyganok; Josef Mikeš

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2016)

  • Volume: 55, Issue: 1, page 47-52
  • ISSN: 0231-9721

Abstract

top
In Riemannian geometry the prescribed Ricci curvature problem is as follows: given a smooth manifold M and a symmetric 2-tensor r , construct a metric on M whose Ricci tensor equals r . In particular, DeTurck and Koiso proved the following celebrated result: the Ricci curvature uniquely determines the Levi-Civita connection on any compact Einstein manifold with non-negative section curvature. In the present paper we generalize the result of DeTurck and Koiso for a Riemannian manifold with non-negative section curvature. In addition, we extended our result to complete non-compact Riemannian manifolds with nonnegative sectional curvature and with finite total scalar curvature.

How to cite

top

Khripunova, Marina B., et al. "On Uniqueness Theoremsfor Ricci Tensor." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 55.1 (2016): 47-52. <http://eudml.org/doc/286700>.

@article{Khripunova2016,
abstract = {In Riemannian geometry the prescribed Ricci curvature problem is as follows: given a smooth manifold $M$ and a symmetric 2-tensor $r$, construct a metric on $M$ whose Ricci tensor equals $r$. In particular, DeTurck and Koiso proved the following celebrated result: the Ricci curvature uniquely determines the Levi-Civita connection on any compact Einstein manifold with non-negative section curvature. In the present paper we generalize the result of DeTurck and Koiso for a Riemannian manifold with non-negative section curvature. In addition, we extended our result to complete non-compact Riemannian manifolds with nonnegative sectional curvature and with finite total scalar curvature.},
author = {Khripunova, Marina B., Stepanov, Sergey E., Tsyganok, Irina I., Mikeš, Josef},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Uniqueness theorem for Ricci tensor; compact and complete Riemannian manifolds; vanishing theorem},
language = {eng},
number = {1},
pages = {47-52},
publisher = {Palacký University Olomouc},
title = {On Uniqueness Theoremsfor Ricci Tensor},
url = {http://eudml.org/doc/286700},
volume = {55},
year = {2016},
}

TY - JOUR
AU - Khripunova, Marina B.
AU - Stepanov, Sergey E.
AU - Tsyganok, Irina I.
AU - Mikeš, Josef
TI - On Uniqueness Theoremsfor Ricci Tensor
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2016
PB - Palacký University Olomouc
VL - 55
IS - 1
SP - 47
EP - 52
AB - In Riemannian geometry the prescribed Ricci curvature problem is as follows: given a smooth manifold $M$ and a symmetric 2-tensor $r$, construct a metric on $M$ whose Ricci tensor equals $r$. In particular, DeTurck and Koiso proved the following celebrated result: the Ricci curvature uniquely determines the Levi-Civita connection on any compact Einstein manifold with non-negative section curvature. In the present paper we generalize the result of DeTurck and Koiso for a Riemannian manifold with non-negative section curvature. In addition, we extended our result to complete non-compact Riemannian manifolds with nonnegative sectional curvature and with finite total scalar curvature.
LA - eng
KW - Uniqueness theorem for Ricci tensor; compact and complete Riemannian manifolds; vanishing theorem
UR - http://eudml.org/doc/286700
ER -

References

top
  1. DeTurck, D., Koiso, N., Uniqueness and non-existence of metrics with prescribed Ricci curvature, . Annales de l’Institut Henri Poincare (C) Analyse non lineaire 1, 5 (1984), 351–359. (1984) Zbl0556.53026MR0779873
  2. Hamilton, R. S., The Ricci curvature equation, . Lecture notes: Seminar on nonlinear partial differential equations, Mathematical Sciences Research Institute Publications, Berkeley, 1983, 47–72. (1983) MR0765228
  3. Becce, A. L., Einstein manifolds, . Springer-Verlag, Berlin–Heidelberg, 1987. (1987) MR0867684
  4. Eells, J., Sampson, J. H., 10.2307/2373037, . American Journal of Mathematics 86, 1 (1964), 109–160. (1964) Zbl0122.40102MR0164306DOI10.2307/2373037
  5. Stepanov, S., Tsyganok, I., Vanishing theorems for projective and harmonic mappings, . Journal of Geometry 106, 3 (2015), 640–641. (2015) MR1878047
  6. Yano, K., Bochner, S., Curvature and Betti numbers, . Princeton Univ. Press, Princeton, 1953. (1953) Zbl0051.39402MR0062505
  7. Vilms, J., 10.4310/jdg/1214429276, . Journal of Differential Geometry 4, 1 (1970), 73–79. (1970) Zbl0194.52901MR0262984DOI10.4310/jdg/1214429276
  8. Schoen, R., Yau, S. T., 10.1007/BF02568161, . Commenttarii Mathematici Helvetici 51, 1 (1976), 333–341. (1976) MR0438388DOI10.1007/BF02568161
  9. Yau, S. T., 10.1512/iumj.1976.25.25051, . Indiana University Mathematics Journal 25, 7 (1976), 659–679. (1976) Zbl0335.53041MR0417452DOI10.1512/iumj.1976.25.25051
  10. Yau, S. T., Seminar on Differential Geometry, . Annals of Mathematics Studies, 102, Princeton Univ. Press, Princeton, NJ, 1982. (1982) Zbl0471.00020MR0645728
  11. Berger, M., Ebin, D., 10.4310/jdg/1214429060, . Journal of Differential Geometry 3, 3-4 (1969), 379–392. (1969) MR0266084DOI10.4310/jdg/1214429060
  12. Pigola, S., Rigoli, M., Setti, A. G., Vanishing and finiteness results in geometric analysis. A generalization of the Bochner technique, . Birkhäuser, Basel, 2008. (2008) Zbl1150.53001MR2401291

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.