A Linguistic Fuzzy Approach to the Consensus Reaching in Multiple Criteria Group Decision-making Problems

Vojtěch Sukač; Jana Talašová; Jan Stoklasa

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2016)

  • Volume: 55, Issue: 1, page 133-150
  • ISSN: 0231-9721

Abstract

top
The paper introduces a new method of reaching a consensus in multiple criteria group decision-making under fuzziness. This model is based on the general definition of the ‘soft’ consensus introduced by Kacprzyk and Fedrizzi in 1986. The fuzzy evaluations of alternatives express degrees of fulfillment of the given goals by the respective alternatives for each expert. The selection of the best alternative is based on the fuzzy consensus by experts. For this purpose a set of alternatives which are good enough with respect to the most of relevant experts is identified. From this set the alternative with the highest center of gravity (defuzzified fuzzy evaluation) is selected as the most promising one.

How to cite

top

Sukač, Vojtěch, Talašová, Jana, and Stoklasa, Jan. "A Linguistic Fuzzy Approach to the Consensus Reaching in Multiple Criteria Group Decision-making Problems." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 55.1 (2016): 133-150. <http://eudml.org/doc/286711>.

@article{Sukač2016,
abstract = {The paper introduces a new method of reaching a consensus in multiple criteria group decision-making under fuzziness. This model is based on the general definition of the ‘soft’ consensus introduced by Kacprzyk and Fedrizzi in 1986. The fuzzy evaluations of alternatives express degrees of fulfillment of the given goals by the respective alternatives for each expert. The selection of the best alternative is based on the fuzzy consensus by experts. For this purpose a set of alternatives which are good enough with respect to the most of relevant experts is identified. From this set the alternative with the highest center of gravity (defuzzified fuzzy evaluation) is selected as the most promising one.},
author = {Sukač, Vojtěch, Talašová, Jana, Stoklasa, Jan},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Fuzzy; group decision-making; multicriteria evaluation; fuzzy weighted average; consensus reaching; fuzzy quantifiers},
language = {eng},
number = {1},
pages = {133-150},
publisher = {Palacký University Olomouc},
title = {A Linguistic Fuzzy Approach to the Consensus Reaching in Multiple Criteria Group Decision-making Problems},
url = {http://eudml.org/doc/286711},
volume = {55},
year = {2016},
}

TY - JOUR
AU - Sukač, Vojtěch
AU - Talašová, Jana
AU - Stoklasa, Jan
TI - A Linguistic Fuzzy Approach to the Consensus Reaching in Multiple Criteria Group Decision-making Problems
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2016
PB - Palacký University Olomouc
VL - 55
IS - 1
SP - 133
EP - 150
AB - The paper introduces a new method of reaching a consensus in multiple criteria group decision-making under fuzziness. This model is based on the general definition of the ‘soft’ consensus introduced by Kacprzyk and Fedrizzi in 1986. The fuzzy evaluations of alternatives express degrees of fulfillment of the given goals by the respective alternatives for each expert. The selection of the best alternative is based on the fuzzy consensus by experts. For this purpose a set of alternatives which are good enough with respect to the most of relevant experts is identified. From this set the alternative with the highest center of gravity (defuzzified fuzzy evaluation) is selected as the most promising one.
LA - eng
KW - Fuzzy; group decision-making; multicriteria evaluation; fuzzy weighted average; consensus reaching; fuzzy quantifiers
UR - http://eudml.org/doc/286711
ER -

References

top
  1. Alonso, S., Group Decision Making with Incomplete Fuzzy Preference Relations, . Ph.D. Thesis, Universidad de Granada, Granada, 2006. (2006) 
  2. Arrow, K. J., Social Choice and Individual Values, . 2nd edition, Wiley, New York, 1963. (1963) 
  3. Bouyssou, D., Dubois, D., Pirlot, M., Prade, H., Decision-making Process: Concepts and Methods, . Wiley, New York, 2009. (2009) 
  4. Bustince, H., Fuzzy Sets and Their Extensions: Representation, Aggregation and Models, . STUDFUZZ 220, Springer, Berlin, Heidelberg, 2008. (2008) Zbl1130.68004
  5. Cabrerizo, F. J., Pérez, I. J., Herrera-Viedma, E., 10.1016/j.knosys.2009.11.019, . Knowledge-Based Systems 23 (2010), 169–181. (2010) DOI10.1016/j.knosys.2009.11.019
  6. Çağman, N., Wang, X., A new group decision-making method based on fuzzy set operations, . European Journal of Pure and Applied Mathematics 4, 1 (2011), 42–49. (2011) Zbl1231.91063
  7. Calvo, T., Beliakov, G., 10.1016/j.fss.2009.05.012, . Fuzzy Sets and Systems 161 (2010), 1420–1436. (2010) MR2606423DOI10.1016/j.fss.2009.05.012
  8. Eklund, P., Rusinowska, A., De Swart, H., 10.1016/j.ejor.2005.11.012, . European Journal of Operational Research 178 (2007), 185–193. (2007) Zbl1102.90337DOI10.1016/j.ejor.2005.11.012
  9. Kacprzyk, J., Fedrizzi, M., ‘Soft’ consensus measures for monitoring real consensus reaching processes under fuzzy preferences, . Control and Cybernetics 15 (1986), 309–323. (1986) MR0906878
  10. Kacprzyk, J., Roubens, M., Non-Conventional Preference Relations in Decision Making, . Springer-Verlag, Berlin, Heidelberg, 1988. (1988) Zbl0642.00025MR1133644
  11. Kacprzyk, J., Fedrizzi, M., Nurmi, H., ‘Soft’ degrees of consensus under fuzzy preferences and fuzzy majorities, . In: J., Kacprzyk et al. (eds.): Consensus under Fuzziness, Springer Science & Business Media, New York, 1997, 55–83. (1997) 
  12. Kacprzyk, J., Nurmi, H., Fedrizzi, M., Consensus under Fuzziness, . Springer Science & Business Media, New York, 1997. (1997) Zbl0882.00024
  13. Klamler, C., 10.1016/j.mathsocsci.2003.11.003, . Mathematical Social Sciences 48 (2004), 103–108. (2004) Zbl1091.91020MR2054547DOI10.1016/j.mathsocsci.2003.11.003
  14. González-Pachón, J., Romero, C., 10.1016/S0305-0483(98)00052-8, . Omega, International Journal of Management Science 27 (1999), 341–347. (1999) DOI10.1016/S0305-0483(98)00052-8
  15. Herrera-Viedma, E., Consensual Processes, . STUDFUZZ 267, Springer-Verlag, Berlin, Heidelberg, 2011. (2011) 
  16. Herrera, F., Herrera-Viedma, E., Verdegay, J. L., 10.1016/S0165-0114(96)00047-4, . Fuzzy Sets and Systems 88 (1997), 31–49. (1997) DOI10.1016/S0165-0114(96)00047-4
  17. Herrera, F., Herrera-Viedma, E., Verdegay, J. L., 10.1016/0165-0114(95)00107-7, . Fuzzy Sets and Systems 78 (1996), 73–87. (1996) MR1376216DOI10.1016/0165-0114(95)00107-7
  18. Holeček, P., Talašová, J., Müller, I., Fuzzy methods of multiple-criteria evaluation and their software implementation, . In: V. K., Mago, N., Bhatia (eds.): Cross-Disciplinary Applications of Artificial Intelligence and Pattern Recognition: Advancing Technologies, IGI Global 2012, 388–411. (2012) 
  19. Kelly, J. S., Social Choice Theory, . Springer-Verlag, Berlin, Heidelberg, New York, 1988. (1988) Zbl0689.90002
  20. Maskin, E., The Arrow Impossibility Theorem, . Columbia University Press, New York, 2014. (2014) 
  21. Pavlačka, O., Talašová, J., Fuzzy vectors of normalized weights and their application in decision making models, . Aplimat – Journal of Applied Mathematics 1, 1 (2008), 451–462. (2008) 
  22. Pavlačka, O., Talašová, J., 10.1016/j.fss.2009.12.008, . Fuzzy Sets and Systems 161 (2010), 1585–1603. (2010) Zbl1186.90144MR2608263DOI10.1016/j.fss.2009.12.008
  23. Pavlačka, O., 10.1016/j.ins.2011.06.022, . Information Sciences 181 (2011), 4969–4992. (2011) Zbl1241.68117MR2832874DOI10.1016/j.ins.2011.06.022
  24. Slowiński, R., Fuzzy Sets in Decision Analysis, Operations Research and Statistics, . Springer Science & Business Media, New York, 1998. (1998) Zbl0905.00031MR1672362
  25. Talašová, J., Fuzzy metody vícekriteriálního hodnocení a rozhodování, . Vydavatelství UP, Olomouc, 2003, (in Czech). (2003) 
  26. Talašová, J., Pavlačka, O., Fuzzy probability spaces and their applications in decision making, . Austrian Journal of Statistics. 35, 2 & 3 (2006), 347–356. (2006) 
  27. Zadeh, L. A., 10.1016/S0019-9958(65)90241-X, . Information and Control 8, 3 (1965), 338–353. (1965) Zbl0139.24606MR0219427DOI10.1016/S0019-9958(65)90241-X
  28. Zadeh, L. A., The concept of a linguistic variable and its application to approximate reasoning-I, . Information Sciences 8, 3 (1975), 199–249. (1975) Zbl0397.68071MR0386369

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.