The Killing Tensors on an n -dimensional Manifold with S L ( n , ) -structure

Sergey E. Stepanov; Irina I. Tsyganok; Marina B. Khripunova

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2016)

  • Volume: 55, Issue: 1, page 121-131
  • ISSN: 0231-9721

Abstract

top
In this paper we solve the problem of finding integrals of equations determining the Killing tensors on an n -dimensional differentiable manifold M endowed with an equiaffine S L ( n , ) -structure and discuss possible applications of obtained results in Riemannian geometry.

How to cite

top

Stepanov, Sergey E., Tsyganok, Irina I., and Khripunova, Marina B.. "The Killing Tensors on an $n$-dimensional Manifold with $SL(n,)$-structure." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 55.1 (2016): 121-131. <http://eudml.org/doc/286717>.

@article{Stepanov2016,
abstract = {In this paper we solve the problem of finding integrals of equations determining the Killing tensors on an $n$-dimensional differentiable manifold $M$ endowed with an equiaffine $SL(n,)$-structure and discuss possible applications of obtained results in Riemannian geometry.},
author = {Stepanov, Sergey E., Tsyganok, Irina I., Khripunova, Marina B.},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Differentiable manifold; $SL(n,)$-structure; Killing tensors},
language = {eng},
number = {1},
pages = {121-131},
publisher = {Palacký University Olomouc},
title = {The Killing Tensors on an $n$-dimensional Manifold with $SL(n,)$-structure},
url = {http://eudml.org/doc/286717},
volume = {55},
year = {2016},
}

TY - JOUR
AU - Stepanov, Sergey E.
AU - Tsyganok, Irina I.
AU - Khripunova, Marina B.
TI - The Killing Tensors on an $n$-dimensional Manifold with $SL(n,)$-structure
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2016
PB - Palacký University Olomouc
VL - 55
IS - 1
SP - 121
EP - 131
AB - In this paper we solve the problem of finding integrals of equations determining the Killing tensors on an $n$-dimensional differentiable manifold $M$ endowed with an equiaffine $SL(n,)$-structure and discuss possible applications of obtained results in Riemannian geometry.
LA - eng
KW - Differentiable manifold; $SL(n,)$-structure; Killing tensors
UR - http://eudml.org/doc/286717
ER -

References

top
  1. Chern, S. S., 10.1090/S0002-9904-1966-11473-8, . Bull. Amer. Math. Soc. 72 (1966), 167–219. (1966) Zbl0136.17804MR0192436DOI10.1090/S0002-9904-1966-11473-8
  2. Eisenhart, L. P., Riemannian geometry, . Princeton Univ. Press, Princeton, NJ, 1949. (1949) Zbl0041.29403MR0035081
  3. Fulton, C. M., 10.1090/S0002-9939-1965-0172215-0, . Proc. Amer. Math. Soc. 16 (1965), 136–137. (1965) Zbl0141.19303MR0172215DOI10.1090/S0002-9939-1965-0172215-0
  4. Katzin, G. H., Levine, J., Note on the number of linearly independent m t h -order first integrals space of constant curvature, . Tensor 19, 1 (1968), 42–44. (1968) MR0224021
  5. Kashiwada, T., On konformal Killing tensor, . Natural Science Report, Ochanomizu University 19, 2 (1968), 67–74. (1968) MR0243458
  6. Kobayashi, Sh., Transformation Groups in Differential Geometry, . Erbeb. Math. Grenzgeb 70, Springer-Verlag, New York–Heidelberg, 1972. (1972) Zbl0246.53031MR0355886
  7. Kobayashi, Sh., Nomizu, K., Foundations of differential geometry. Vol. 1, . Intersience, New York–London, 1963. (1963) MR0152974
  8. Krame, D., Stephani, H., MacCallum, M. A. H., Herit, E., Exact solutions of Einstein’s field equations, . Cambridge Univ. Press, Cambridge, 1980. (1980) MR0614593
  9. Mikeš, J., 10.1007/BF02365193, . J. Math. Sci. 78, 3 (1996), 311–333. (1996) MR1384327DOI10.1007/BF02365193
  10. Mikeš, J., Stepanova, E., Vanžurová, A., Differential Geometry of Special Mappings, . Palacký University, Olomouc, 2015. (2015) Zbl1337.53001MR3442960
  11. Nijenhuis, A., A note on first integrals of geodesics, . Proc. Kon. Ned. Acad. Van. Wetens., Ser. A 52 (1967), 141–145. (1967) Zbl0161.18803MR0212697
  12. Nomizu, K., What is affine differential geometry, ? In: Differential Geometry Meeting, Univ. Munster, 1982, 42–43. (1982) 
  13. Nomizu, K., 10.1007/BF00149271, . Geometriae Dedicata 20, 1 (1986), 43–49. (1986) Zbl0587.53010MR0823159DOI10.1007/BF00149271
  14. Schouten, J. A., Ricci-calculus, . Grundlehren Math. Wiss., 10, Springer-Verlag, Berlin, 1954. (1954) Zbl0057.37803MR0516659
  15. Schirokow, P. A., Schirokow, A. P., Affine Differentialgeometrie, . Teubner, Leipzig, 1962. (1962) Zbl0106.14703MR0150666
  16. Simon, U., Schwenk-Schellschmidt, A., Viesel, H., Introduction to the Affine Differential Geometry of Hypersurfaces, . Science University of Tokyo, Tokyo, 1991. (1991) MR1200242
  17. Stepanov, S. E., 10.1023/A:1022645304580, . Theoretical and Mathematical Physics 134, 3 (2003), 333–338. (2003) Zbl1178.53074MR2001815DOI10.1023/A:1022645304580
  18. Stepanov, S. E., The Bochner technique for an m -dimensional compact manifold with S L ( m , ) -structure, . St. Petersburg Mathematical Journal 10, 4 (1999), 703–714. (1999) MR1654091
  19. Stepanov, S. E., 10.1016/S0393-0440(99)00046-7, . J. Geom. Phys. 33 (2000), 191–209. (2000) Zbl0977.53013MR1747041DOI10.1016/S0393-0440(99)00046-7
  20. Stepanov, S. E., A class of closed forms and special Maxwell’s equations, . Tensor, N.S. 58 (1997), 233–242. (1997) Zbl0954.53026MR1719406
  21. Stepanov, S. E., 10.1023/A:1015327018220, . J. Math. Sci. 110, 4 (2002), 2892–2906. (2002) MR1758432DOI10.1023/A:1015327018220
  22. Stepanov, S. E., Jukl, M., Mikeš, J., On dimensions of vector spaces of conformal Killing forms, . In: Springer Proceedings in Mathematics & Statistics 85, (Algebra, geometry and mathematical physics. AGMP, Mulhouse, France, October 24–26, 2011), Springer, Berlin, 2014, 495–507. (2014) Zbl1320.53041MR3275956
  23. Stepanov, S. E., Smol’nikova, M. V., Fundamental differential operators of orders one on exterior and symmetric forms, . Russ. Math. J. 46, 11 (2002), 51–56. (2002) MR1972985
  24. Stepanov, S. E., Tsyganok, I. I., Vector fields in a manifolds with equiaffine connections, . In: Webs and Quasigroups, Tver Univ. Press, Tver, 1993, 70–77. (1993) MR1224969
  25. Tachibana, S.-I., 10.2748/tmj/1178243034, . Tohoku Math. Journal 21, 1 (1969), 56–64. (1969) Zbl0182.55301MR0242078DOI10.2748/tmj/1178243034
  26. Yano, K., Ishihara, Sh., 10.4310/jdg/1214433157, . J. Differential Geometry 10 (1975), 501–509. (1975) MR0390969DOI10.4310/jdg/1214433157
  27. Yano, K., Nagano, T., 10.1016/S1385-7258(57)50059-0, . Ind. Math. 14 (1957), 451–458. (1957) Zbl0079.15603MR0110993DOI10.1016/S1385-7258(57)50059-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.