Lifts of Foliated Linear Connectionsto the Second Order Transverse Bundles
Vadim V. Shurygin; Svetlana K. Zubkova
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2016)
- Volume: 55, Issue: 1, page 111-120
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topShurygin, Vadim V., and Zubkova, Svetlana K.. "Lifts of Foliated Linear Connectionsto the Second Order Transverse Bundles." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 55.1 (2016): 111-120. <http://eudml.org/doc/286719>.
@article{Shurygin2016,
abstract = {The second order transverse bundle $T^2_\{\}M$ of a foliated manifold $M$ carries a natural structure of a smooth manifold over the algebra $\mathbb \{D\}^2$ of truncated polynomials of degree two in one variable. Prolongations of foliated mappings to second order transverse bundles are a partial case of more general $\mathbb \{D\}^2$-smooth foliated mappings between second order transverse bundles. We establish necessary and sufficient conditions under which a $\mathbb \{D\}^2$-smooth foliated diffeomorphism between two second order transverse bundles maps the lift of a foliated linear connection into the lift of a foliated linear connection.},
author = {Shurygin, Vadim V., Zubkova, Svetlana K.},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Foliation; transverse bundle; second order transverse bundle; projectable linear connection; Lie derivative; Weil bundle},
language = {eng},
number = {1},
pages = {111-120},
publisher = {Palacký University Olomouc},
title = {Lifts of Foliated Linear Connectionsto the Second Order Transverse Bundles},
url = {http://eudml.org/doc/286719},
volume = {55},
year = {2016},
}
TY - JOUR
AU - Shurygin, Vadim V.
AU - Zubkova, Svetlana K.
TI - Lifts of Foliated Linear Connectionsto the Second Order Transverse Bundles
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2016
PB - Palacký University Olomouc
VL - 55
IS - 1
SP - 111
EP - 120
AB - The second order transverse bundle $T^2_{}M$ of a foliated manifold $M$ carries a natural structure of a smooth manifold over the algebra $\mathbb {D}^2$ of truncated polynomials of degree two in one variable. Prolongations of foliated mappings to second order transverse bundles are a partial case of more general $\mathbb {D}^2$-smooth foliated mappings between second order transverse bundles. We establish necessary and sufficient conditions under which a $\mathbb {D}^2$-smooth foliated diffeomorphism between two second order transverse bundles maps the lift of a foliated linear connection into the lift of a foliated linear connection.
LA - eng
KW - Foliation; transverse bundle; second order transverse bundle; projectable linear connection; Lie derivative; Weil bundle
UR - http://eudml.org/doc/286719
ER -
References
top- Evtushik, L. E., Lumiste, Yu. G., Ostianu, N. M., Shirokov, A. P., Differential-geometric structures on manifolds, . In: Problemy Geometrii. Itogi Nauki i Tekhniki 9, VINITI Akad. Nauk SSSR, Moscow, 1979, 5–246. (1979) Zbl0455.58002MR0573267
- Gainullin, F. R., Shurygin, V. V., Holomorphic tensor fields and linear connections on a second order tangent bundle, . Uchen. Zapiski Kazan. Univ. Ser. Fiz.-matem. Nauki 151, 1 (2009), 36–50. (2009) Zbl1216.53019
- Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Differential Geometry, . Springer, Berlin, 1993. (1993) MR1202431
- Molino, P., Riemannian Foliations, . Birkhäuser, Boston, 1988. (1988) Zbl0824.53028MR0932463
- Morimoto, A., 10.1017/S002776300001388X, . Nagoya Math. J. 40 (1970), 99–120. (1970) MR0279719DOI10.1017/S002776300001388X
- Morimoto, A., 10.4310/jdg/1214433720, . J. Different. Geom. 11, 4 (1976), 479–498. (1976) Zbl0358.53013MR0445422DOI10.4310/jdg/1214433720
- Pogoda, Z., Horizontal lifts and foliations, . Rend. Circ. Mat. Palermo 38, 2, suppl. no. 21 (1989), 279–289. (1989) Zbl0678.57013MR1009580
- Shurygin, V. V., Structure of smooth mappings over Weil algebras and the category of manifolds over algebras, . Lobachevskii J. Math. 5 (1999), 29–55. (1999) Zbl0985.58001MR1752307
- Shurygin, V. V., 10.1023/A:1012848404391, . J. Math. Sci. 108, 2 (2002), 249–294. (2002) Zbl1007.58001MR1887820DOI10.1023/A:1012848404391
- Shurygin, V. V., 10.1007/s10958-011-0507-3, . J. Math. Sci. 177, 5 (2011), 758–771. (2011) MR2786527DOI10.1007/s10958-011-0507-3
- Vishnevskii, V. V., 10.1023/A:1012818202573, . J. Math. Sci. 108, 2 (2002), 151–187. (2002) MR1887816DOI10.1023/A:1012818202573
- Wolak, R., Normal bundles of foliations of order , . Demonstratio Math. 18, 4 (1985), 977–994. (1985) Zbl0609.58004MR0857354
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.