Approximate stable multidimensional polynomial factorization into linear m -D polynomial factors

Nikos E. Mastorakis

Kybernetika (1996)

  • Volume: 32, Issue: 3, page 275-288
  • ISSN: 0023-5954

How to cite

top

Mastorakis, Nikos E.. "Approximate stable multidimensional polynomial factorization into linear $m$-D polynomial factors." Kybernetika 32.3 (1996): 275-288. <http://eudml.org/doc/28672>.

@article{Mastorakis1996,
author = {Mastorakis, Nikos E.},
journal = {Kybernetika},
keywords = { systems; approximate factorisation; multidimensional polynomials; stability},
language = {eng},
number = {3},
pages = {275-288},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Approximate stable multidimensional polynomial factorization into linear $m$-D polynomial factors},
url = {http://eudml.org/doc/28672},
volume = {32},
year = {1996},
}

TY - JOUR
AU - Mastorakis, Nikos E.
TI - Approximate stable multidimensional polynomial factorization into linear $m$-D polynomial factors
JO - Kybernetika
PY - 1996
PB - Institute of Information Theory and Automation AS CR
VL - 32
IS - 3
SP - 275
EP - 288
LA - eng
KW - systems; approximate factorisation; multidimensional polynomials; stability
UR - http://eudml.org/doc/28672
ER -

References

top
  1. K. M. Brown, Computer Oriented Methods for Fitting Tabular Data in the Linear and Nonlinear Least Squares Sense, Research Report No. 72-13, Department of Computer, Information and Control Sciences, University of Minnesota 1972. (1972) 
  2. K. M. Brown, J. E. Dennis, Derivative free analogues of the Levenberg-Marquardt and Gauss algorithms for nonlinear least squares approximations, Numer. Math. 18 (1972), 289-297. (1972) MR0303723
  3. R. A. De Carlo J. Murray, R. Saeks, Multivariable Nyquist theory, Internat. J. Control 25 (1976), 5, 657-675. (1976) MR0449829
  4. P. Delsarte Y. V. Genin, Y. G. Kamp, A simple proof of Rudin's multivariable stability theorem, IEEE Trans. Acoust. Speech Signal Process. ASSP-28 (1980), 6, 701-705. (1980) MR0604825
  5. T. Kaczorek, Two-Dimensional Linear Systems, Lecture Notes in Control and Inform. Sci. 68. Springer-Verlag, Berlin 1985. (1985) Zbl0593.93031MR0870854
  6. K. Levenberg, A method for the solution of certain non-linear problems in least squares, Quart. Appl. Meth. 2 (1944), 164-168. (1944) Zbl0063.03501MR0010666
  7. D. W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, SIAM J. 11 (1963), 2. (1963) Zbl0112.10505MR0153071
  8. N. E. Mastorakis, Approximate and stable separable polynomial factorization, Found. Comput. Decision Sci. 21 (1996), 1, 55-64. (1996) Zbl0861.93020MR1399859
  9. N. E. Mastorakis, Multidimensional Polynomials, PҺ.D. Thesis. National Technical University of Athens 1992. (1992) Zbl0781.93048
  10. N. E. Mastorakis, N. J. Theodorou, Operators’ method for m -D polynomials factorization, Found. Comput. Decision Sci. 15 (1990), 3-4, 159-172. (1990) MR1114659
  11. N. E. Mastorakis, N. J. Theodorou, Approximate factorization of multidimensional polynomials depending on a parameter λ , Bull. Electronics of the Polish Academy 40 (1992), 1, 47-51. (1992) Zbl0781.93048
  12. N. E. Mastorakis, N. J. Theodorou, State-space model factorization in m -dimensions, Appl. in Stability. Found. Comput. Decision Sci. 17 (1992), 1, 55-61. (1992) Zbl0814.93036MR1174151
  13. N. E. Mastorakis, N. J. Theodorou, Simple, group and approximate factorization of multidimensional polynomials, In: IEEE-Mediterranean Conference on New Directions in Control Theory and Applications. Session: 2-D Systems, Chania 1993. (1993) 
  14. N. E. Mastorakis, N. J. Theodorou, Exact and approximate multidimensional polynomial factorization, Application on measurement processing. Found. Comput. Decision Sci. 19 (1994), 4, 307-317. (1994) Zbl0827.93036MR1319944
  15. N. E. Mastorakis, N. J. Theodorou, S. G. Tzafestas, Multidimensional polynomial factorization in linear m -D factors, Internat. J. Systems Sci. 23 (1992), 11, 1805-1824. (1992) MR1194285
  16. N. E. Mastorakis S. G. Tzafestas, N. J. Theodorou, A simple multidimensional polynomial factorization method, In: IMACS-IFAC Internat. Symp. on Math. and Intelligent Models in System Simulation, Brussels 1990, pp. VII.B.1-1. (1990) 
  17. N. E. Mastorakis S. G. Tzafestas, N. J. Theodorou, A reduction method for multivariable polynomial factorization, In: International Symposium on Signal Processing, Robotics and Neural Networks (SPRANN-94), IMACS-IEEE. Proceedings Session 2-D Systems, Lille 1994. (1994) 
  18. W. Murray (ed.), Numerical Methods for Unconstrained Optimization, Academic Press, New York 1972. (1972) 
  19. J. Murray, Another proof and shaгpening of Huang's theorem, IEEE Trans. Acoust. Speech Signal Process. ASSP-25 (1977), 581-582. (1977) 
  20. M. Powell, Problems Related to Unconstrained Optimization, Chapter in [18]. 
  21. J. L. Shanks S. Treital, J. H. Justice, Stability and synthesis of two dimensional recursive filters, IEEE Trans. Audio Electroacoust. 20 (1972), 115-208. (1972) 
  22. N. J. Theodorou, S. G. Tzafestas, Reducibility and factorizability of multivariable polynomials, Control Theory Adv. Tech. 1 (1985), 25-46. (1985) 
  23. S. G. Tzafestas (ed.), Multidimensional Systems: Techniques and Applications, Marcel Dekker, New York 1986. (1986) Zbl0624.00025

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.