Geometry and inequalities of geometric mean
Trung Hoa Dinh; Sima Ahsani; Tin-Yau Tam
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 3, page 777-792
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topDinh, Trung Hoa, Ahsani, Sima, and Tam, Tin-Yau. "Geometry and inequalities of geometric mean." Czechoslovak Mathematical Journal 66.3 (2016): 777-792. <http://eudml.org/doc/286783>.
@article{Dinh2016,
abstract = {We study some geometric properties associated with the $t$-geometric means $A\sharp _\{t\}B := A^\{1/2\}(A^\{-1/2\}BA^\{-1/2\})^\{t\}A^\{1/2\}$ of two $n\times n$ positive definite matrices $A$ and $B$. Some geodesical convexity results with respect to the Riemannian structure of the $n\times n$ positive definite matrices are obtained. Several norm inequalities with geometric mean are obtained. In particular, we generalize a recent result of Audenaert (2015). Numerical counterexamples are given for some inequality questions. A conjecture on the geometric mean inequality regarding $m$ pairs of positive definite matrices is posted.},
author = {Dinh, Trung Hoa, Ahsani, Sima, Tam, Tin-Yau},
journal = {Czechoslovak Mathematical Journal},
keywords = {geometric mean; positive definite matrix; log majorization; geodesics; geodesically convex; geodesic convex hull; unitarily invariant norm},
language = {eng},
number = {3},
pages = {777-792},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Geometry and inequalities of geometric mean},
url = {http://eudml.org/doc/286783},
volume = {66},
year = {2016},
}
TY - JOUR
AU - Dinh, Trung Hoa
AU - Ahsani, Sima
AU - Tam, Tin-Yau
TI - Geometry and inequalities of geometric mean
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 3
SP - 777
EP - 792
AB - We study some geometric properties associated with the $t$-geometric means $A\sharp _{t}B := A^{1/2}(A^{-1/2}BA^{-1/2})^{t}A^{1/2}$ of two $n\times n$ positive definite matrices $A$ and $B$. Some geodesical convexity results with respect to the Riemannian structure of the $n\times n$ positive definite matrices are obtained. Several norm inequalities with geometric mean are obtained. In particular, we generalize a recent result of Audenaert (2015). Numerical counterexamples are given for some inequality questions. A conjecture on the geometric mean inequality regarding $m$ pairs of positive definite matrices is posted.
LA - eng
KW - geometric mean; positive definite matrix; log majorization; geodesics; geodesically convex; geodesic convex hull; unitarily invariant norm
UR - http://eudml.org/doc/286783
ER -
References
top- Ando, T., 10.1016/0024-3795(79)90179-4, Linear Algebra Appl. 26 (1979), 203-241. (1979) Zbl0495.15018MR0535686DOI10.1016/0024-3795(79)90179-4
- Ando, T., Hiai, F., Log majorization and complementary Golden-Thompson type inequalities, Linear Algebra Appl. 197/198 (1994), 113-131. (1994) Zbl0793.15011MR1275611
- Araki, H., 10.1007/BF01045887, Lett. Math. Phys. 19 (1990), 167-170. (1990) Zbl0705.47020MR1039525DOI10.1007/BF01045887
- Audenaert, K. M. R., A norm inequality for pairs of commuting positive semidefinite matrices, Electron. J. Linear Algebra (electronic only) 30 (2015), 80-84. (2015) Zbl1326.15030MR3318430
- Bhatia, R., 10.1007/978-3-642-30232-9_2, Matrix Information Geometry Springer, Berlin F. Nielsen et al. (2013), 35-51. (2013) Zbl1271.15019MR2964446DOI10.1007/978-3-642-30232-9_2
- Bhatia, R., Postitive Definite Matrices, Princeton Series in Applied Mathematics Princeton University Press, Princeton (2007). (2007) MR3443454
- Bhatia, R., Matrix Analysis, Graduate Texts in Mathematics 169 Springer, New York (1997). (1997) MR1477662
- Bhatia, R., Grover, P., Norm inequalities related to the matrix geometric mean, Linear Algebra Appl. 437 (2012), 726-733. (2012) Zbl1252.15023MR2921731
- Bourin, J.-C., 10.1142/S0129167X09005509, Int. J. Math. 20 (2009), 679-691. (2009) Zbl1181.15030MR2541930DOI10.1142/S0129167X09005509
- Bourin, J.-C., Uchiyama, M., A matrix subadditivity inequality for and , Linear Algebra Appl. 423 (2007), 512-518. (2007) Zbl1123.15013MR2312422
- Fiedler, M., Pták, V., A new positive definite geometric mean of two positive definite matrices, Linear Algebra Appl. 251 (1997), 1-20. (1997) Zbl0872.15014MR1421263
- Hayajneh, S., Kittaneh, F., 10.1017/S0004972712001104, Bull. Aust. Math. Soc. 88 (2013), 384-389. (2013) Zbl1287.47011MR3189289DOI10.1017/S0004972712001104
- Lin, M., Remarks on two recent results of Audenaert, Linear Algebra Appl. 489 (2016), 24-29. (2016) Zbl1326.15033MR3421835
- Lin, M., 10.7153/oam-09-54, Oper. Matrices 9 (2015), 917-924. (2015) MR3447594DOI10.7153/oam-09-54
- Marshall, A. W., Olkin, I., Arnold, B. C., Inequalities: Theory of Majorization and Its Applications, Springer Series in Statistics Springer, New York (2011). (2011) Zbl1219.26003MR2759813
- Papadopoulos, A., Metric Spaces, Convexity and Nonpositive Curvature, IRMA Lectures in Mathematics and Theoretical Physics 6 European Mathematical Society, Zürich (2005). (2005) Zbl1115.53002MR2132506
- Pusz, W., Woronowicz, S. L., 10.1016/0034-4877(75)90061-0, Rep. Math. Phys. 8 (1975), 159-170. (1975) Zbl0327.46032MR0420302DOI10.1016/0034-4877(75)90061-0
- Thompson, R. C., 10.1137/0132003, SIAM J. Appl. Math. 32 (1977), 39-63. (1977) Zbl0361.15009MR0424847DOI10.1137/0132003
- Zhan, X., 10.1007/b83956, Lecture Notes in Mathematics 1790 Springer, Berlin (2002). (2002) Zbl1018.15016MR1927396DOI10.1007/b83956
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.