Comaximal graph of C ( X )

Mehdi Badie

Commentationes Mathematicae Universitatis Carolinae (2016)

  • Volume: 57, Issue: 3, page 353-364
  • ISSN: 0010-2628

Abstract

top
In this article we study the comaximal graph Γ 2 ' C ( X ) of the ring C ( X ) . We have tried to associate the graph properties of Γ 2 ' C ( X ) , the ring properties of C ( X ) and the topological properties of X . Radius, girth, dominating number and clique number of the Γ 2 ' C ( X ) are investigated. We have shown that 2 Rad Γ 2 ' C ( X ) 3 and if | X | > 2 then girth Γ 2 ' C ( X ) = 3 . We give some topological properties of X equivalent to graph properties of Γ 2 ' C ( X ) . Finally we have proved that X is an almost P -space which does not have isolated points if and only if C ( X ) is an almost regular ring which does not have any principal maximal ideals if and only if Rad Γ 2 ' C ( X ) = 3 .

How to cite

top

Badie, Mehdi. "Comaximal graph of $C(X)$." Commentationes Mathematicae Universitatis Carolinae 57.3 (2016): 353-364. <http://eudml.org/doc/286784>.

@article{Badie2016,
abstract = {In this article we study the comaximal graph $\Gamma ^\{\prime \}_\{_2\}C(X)$ of the ring $C(X)$. We have tried to associate the graph properties of $\Gamma ^\{\prime \}_\{_2\}C(X)$, the ring properties of $C(X)$ and the topological properties of $X$. Radius, girth, dominating number and clique number of the $\Gamma ^\{\prime \}_\{_2\}C(X)$ are investigated. We have shown that $2\le \operatorname\{Rad\}\Gamma ^\{\prime \}_\{_2\}C(X) \le 3$ and if $|X|> 2$ then $\mathrm \{girth \} \Gamma ^\{\prime \}_\{_2\}C(X)= 3$. We give some topological properties of $X$ equivalent to graph properties of $\Gamma ^\{\prime \}_\{_2\}C(X)$. Finally we have proved that $X$ is an almost $P$-space which does not have isolated points if and only if $C(X)$ is an almost regular ring which does not have any principal maximal ideals if and only if $\operatorname\{Rad\}\Gamma ^\{\prime \}_\{_2\}C(X)= 3$.},
author = {Badie, Mehdi},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {rings of continuous functions; comaximal graph; radius; girth; dominating number; clique number; zero cellularity; $P$-space; almost $P$-space; connected space; regular ring},
language = {eng},
number = {3},
pages = {353-364},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Comaximal graph of $C(X)$},
url = {http://eudml.org/doc/286784},
volume = {57},
year = {2016},
}

TY - JOUR
AU - Badie, Mehdi
TI - Comaximal graph of $C(X)$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2016
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 57
IS - 3
SP - 353
EP - 364
AB - In this article we study the comaximal graph $\Gamma ^{\prime }_{_2}C(X)$ of the ring $C(X)$. We have tried to associate the graph properties of $\Gamma ^{\prime }_{_2}C(X)$, the ring properties of $C(X)$ and the topological properties of $X$. Radius, girth, dominating number and clique number of the $\Gamma ^{\prime }_{_2}C(X)$ are investigated. We have shown that $2\le \operatorname{Rad}\Gamma ^{\prime }_{_2}C(X) \le 3$ and if $|X|> 2$ then $\mathrm {girth } \Gamma ^{\prime }_{_2}C(X)= 3$. We give some topological properties of $X$ equivalent to graph properties of $\Gamma ^{\prime }_{_2}C(X)$. Finally we have proved that $X$ is an almost $P$-space which does not have isolated points if and only if $C(X)$ is an almost regular ring which does not have any principal maximal ideals if and only if $\operatorname{Rad}\Gamma ^{\prime }_{_2}C(X)= 3$.
LA - eng
KW - rings of continuous functions; comaximal graph; radius; girth; dominating number; clique number; zero cellularity; $P$-space; almost $P$-space; connected space; regular ring
UR - http://eudml.org/doc/286784
ER -

References

top
  1. Afkhami M., Barati Z., Khashyarmanesh K., 10.1216/RMJ-2014-44-6-1745, Rocky Mountain J. Math. 44 (2014), no. 6, 1745–1761. MR3310946DOI10.1216/RMJ-2014-44-6-1745
  2. Afkhami M., Khashyarmanesh K., 10.1142/S0219498812501733, J. Algebra Appl. 12 (2013), no. 3, 1250173, 9pp. Zbl1262.05075MR3007910DOI10.1142/S0219498812501733
  3. Akbari S., Habibi M., Majidinya A., Manaviyat R., 10.1007/s10468-011-9309-z, Algebr. Represent. Theory 16 (2013), no. 2, 303–307. Zbl1263.05042MR3035995DOI10.1007/s10468-011-9309-z
  4. Akbari S., Maimani H.R., Yassemi S., 10.1016/S0021-8693(03)00370-3, J. Algebra 270 (2003), no. 1, 169–180. Zbl1032.13014MR2016655DOI10.1016/S0021-8693(03)00370-3
  5. Amini A., Amini B., Momtahan E., Shirdareh Haghighi M.H., 10.1007/s10474-011-0121-3, Acta Math. Hungar. 134 (2011), no. 3, 369–384. Zbl1299.05153MR2886213DOI10.1007/s10474-011-0121-3
  6. Anderson D.F., Mulay S.B., 10.1016/j.jpaa.2006.10.007, J. Pure Appl. Algebra 210 (2007), no. 2, 543–550. Zbl1119.13005MR2320017DOI10.1016/j.jpaa.2006.10.007
  7. Anderson D.D., Naseer M., 10.1006/jabr.1993.1171, J. Algebra 159 (1993), no. 2, 500–514. Zbl0798.05067MR1231228DOI10.1006/jabr.1993.1171
  8. Anderson D.F., Badawi A., On the zero-divisor graph of a ring, Comm. Algebra 36 (2008), no. 8, 3073–3092. Zbl1152.13001MR2440301
  9. Anderson D.F., Levy R., Shapiro J., 10.1016/S0022-4049(02)00250-5, J. Pure Appl. Algebra 180 (2003), no. 3, 221–241. Zbl1076.13001MR1966657DOI10.1016/S0022-4049(02)00250-5
  10. Anderson D.F., Livingston P.S., 10.1006/jabr.1998.7840, J. Algebra 217 (1999), no. 2, 434–447. Zbl1035.13004MR1700509DOI10.1006/jabr.1998.7840
  11. Atiyah M.F., Macdonald I.G., Introduction to Commutative Algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. Zbl0238.13001MR0242802
  12. Azarpanah F., Motamedi M., 10.1007/s10474-005-0205-z, Acta Math. Hungar. 108 (2005), no. 1–2, 25–36. Zbl1092.54007MR2155237DOI10.1007/s10474-005-0205-z
  13. Beck I., 10.1016/0021-8693(88)90202-5, J. Algebra 116 (1988), no. 1, 208–226. Zbl0654.13001MR0944156DOI10.1016/0021-8693(88)90202-5
  14. Biggs N., Algebraic Graph Theory, Cambridge University Press, Cambridge, 1993. Zbl0797.05032MR1271140
  15. Bondy J.A., Murty U.S.R., Graph Theory with Application, The Macmillan Press, New York, 1976. MR0411988
  16. Dheena P., Elavarasan B., 10.5666/KMJ.2009.49.2.283, Kyungpook Math. J. 49 (2009), no. 2, 283–288. Zbl1184.16048MR2554886DOI10.5666/KMJ.2009.49.2.283
  17. Engelking R., General Topology, Heldermann-Verlag, Berlin, 1989. Zbl0684.54001MR1039321
  18. Gillman L., Jerison M., 10.1111/j.2164-0947.1964.tb03479.x, Transactions of the New York Academy of Sciences 27 (1964), no. 1 Series II, 5–6. Zbl0327.46040MR0116199DOI10.1111/j.2164-0947.1964.tb03479.x
  19. Jinnah M.I., Mathew Sh.C., 10.1080/00927872.2011.591861, Comm. Algebra 40 (2012), no. 7, 2400–2404. Zbl1247.13007MR2948834DOI10.1080/00927872.2011.591861
  20. Levy R., Shapiro J., 10.1081/AGB-120013178, Comm. Algebra 30 (2002), no. 2, 745–750. Zbl1055.13007MR1883021DOI10.1081/AGB-120013178
  21. Maimani H.R., Salimi M., Sattari A., Yassemi S., 10.1016/j.jalgebra.2007.02.003, J. Algebra 319 (2008), no. 4, 1801–1808. Zbl1141.13008MR2383067DOI10.1016/j.jalgebra.2007.02.003
  22. Maimani H.R., Pournaki M.R., Tehranian A., Yassemi S., 10.1007/s13369-011-0096-y, Arab. J. Sci. Eng. 36 (2011), no. 6, 997–1011. MR2845527DOI10.1007/s13369-011-0096-y
  23. Mehdi-Nezhad E., Rahimi A.M., 10.2989/16073606.2014.981713, Quaest. Math. 38 (2015), 1–17. MR3420663DOI10.2989/16073606.2014.981713
  24. Moconja S.M., Petrović Z., 10.1017/S0004972710001875, Bull. Aust. Math. Soc. 83 (2011), no. 1, 11–21. Zbl1222.13002MR2765410DOI10.1017/S0004972710001875
  25. Mulay Sh.B., 10.1081/AGB-120004502, Comm. Algebra 30 (2002), no. 7, 3533–3558. Zbl1087.13500MR1915011DOI10.1081/AGB-120004502
  26. Petrovic Z.Z., Moconja S.M., On graphs associated to rings, Novi Sad J. Math. 38 (2008), no. 3, 33–38. Zbl1224.13001MR2598647
  27. Sharma P.K., Bhatwadekar S.M., 10.1006/jabr.1995.1236, J. Algebra 176 (1995), no. 1, 124–127. Zbl0838.05051MR1345297DOI10.1006/jabr.1995.1236
  28. Wang H.-J., 10.1016/j.laa.2008.08.026, Linear Algebra Appl. 430 (2009), no. 2, 633–641. Zbl1151.05019MR2469317DOI10.1016/j.laa.2008.08.026
  29. Willard S., General Topology, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1970. Zbl1052.54001MR0264581
  30. Ye M., Wu T., Liu Q., Yu H., 10.1080/00927872.2012.762924, Comm. Algebra 42 (2014), no. 6, 2476–2483. MR3169718DOI10.1080/00927872.2012.762924

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.