Comaximal graph of
Commentationes Mathematicae Universitatis Carolinae (2016)
- Volume: 57, Issue: 3, page 353-364
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBadie, Mehdi. "Comaximal graph of $C(X)$." Commentationes Mathematicae Universitatis Carolinae 57.3 (2016): 353-364. <http://eudml.org/doc/286784>.
@article{Badie2016,
abstract = {In this article we study the comaximal graph $\Gamma ^\{\prime \}_\{_2\}C(X)$ of the ring $C(X)$. We have tried to associate the graph properties of $\Gamma ^\{\prime \}_\{_2\}C(X)$, the ring properties of $C(X)$ and the topological properties of $X$. Radius, girth, dominating number and clique number of the $\Gamma ^\{\prime \}_\{_2\}C(X)$ are investigated. We have shown that $2\le \operatorname\{Rad\}\Gamma ^\{\prime \}_\{_2\}C(X) \le 3$ and if $|X|> 2$ then $\mathrm \{girth \} \Gamma ^\{\prime \}_\{_2\}C(X)= 3$. We give some topological properties of $X$ equivalent to graph properties of $\Gamma ^\{\prime \}_\{_2\}C(X)$. Finally we have proved that $X$ is an almost $P$-space which does not have isolated points if and only if $C(X)$ is an almost regular ring which does not have any principal maximal ideals if and only if $\operatorname\{Rad\}\Gamma ^\{\prime \}_\{_2\}C(X)= 3$.},
author = {Badie, Mehdi},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {rings of continuous functions; comaximal graph; radius; girth; dominating number; clique number; zero cellularity; $P$-space; almost $P$-space; connected space; regular ring},
language = {eng},
number = {3},
pages = {353-364},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Comaximal graph of $C(X)$},
url = {http://eudml.org/doc/286784},
volume = {57},
year = {2016},
}
TY - JOUR
AU - Badie, Mehdi
TI - Comaximal graph of $C(X)$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2016
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 57
IS - 3
SP - 353
EP - 364
AB - In this article we study the comaximal graph $\Gamma ^{\prime }_{_2}C(X)$ of the ring $C(X)$. We have tried to associate the graph properties of $\Gamma ^{\prime }_{_2}C(X)$, the ring properties of $C(X)$ and the topological properties of $X$. Radius, girth, dominating number and clique number of the $\Gamma ^{\prime }_{_2}C(X)$ are investigated. We have shown that $2\le \operatorname{Rad}\Gamma ^{\prime }_{_2}C(X) \le 3$ and if $|X|> 2$ then $\mathrm {girth } \Gamma ^{\prime }_{_2}C(X)= 3$. We give some topological properties of $X$ equivalent to graph properties of $\Gamma ^{\prime }_{_2}C(X)$. Finally we have proved that $X$ is an almost $P$-space which does not have isolated points if and only if $C(X)$ is an almost regular ring which does not have any principal maximal ideals if and only if $\operatorname{Rad}\Gamma ^{\prime }_{_2}C(X)= 3$.
LA - eng
KW - rings of continuous functions; comaximal graph; radius; girth; dominating number; clique number; zero cellularity; $P$-space; almost $P$-space; connected space; regular ring
UR - http://eudml.org/doc/286784
ER -
References
top- Afkhami M., Barati Z., Khashyarmanesh K., 10.1216/RMJ-2014-44-6-1745, Rocky Mountain J. Math. 44 (2014), no. 6, 1745–1761. MR3310946DOI10.1216/RMJ-2014-44-6-1745
- Afkhami M., Khashyarmanesh K., 10.1142/S0219498812501733, J. Algebra Appl. 12 (2013), no. 3, 1250173, 9pp. Zbl1262.05075MR3007910DOI10.1142/S0219498812501733
- Akbari S., Habibi M., Majidinya A., Manaviyat R., 10.1007/s10468-011-9309-z, Algebr. Represent. Theory 16 (2013), no. 2, 303–307. Zbl1263.05042MR3035995DOI10.1007/s10468-011-9309-z
- Akbari S., Maimani H.R., Yassemi S., 10.1016/S0021-8693(03)00370-3, J. Algebra 270 (2003), no. 1, 169–180. Zbl1032.13014MR2016655DOI10.1016/S0021-8693(03)00370-3
- Amini A., Amini B., Momtahan E., Shirdareh Haghighi M.H., 10.1007/s10474-011-0121-3, Acta Math. Hungar. 134 (2011), no. 3, 369–384. Zbl1299.05153MR2886213DOI10.1007/s10474-011-0121-3
- Anderson D.F., Mulay S.B., 10.1016/j.jpaa.2006.10.007, J. Pure Appl. Algebra 210 (2007), no. 2, 543–550. Zbl1119.13005MR2320017DOI10.1016/j.jpaa.2006.10.007
- Anderson D.D., Naseer M., 10.1006/jabr.1993.1171, J. Algebra 159 (1993), no. 2, 500–514. Zbl0798.05067MR1231228DOI10.1006/jabr.1993.1171
- Anderson D.F., Badawi A., On the zero-divisor graph of a ring, Comm. Algebra 36 (2008), no. 8, 3073–3092. Zbl1152.13001MR2440301
- Anderson D.F., Levy R., Shapiro J., 10.1016/S0022-4049(02)00250-5, J. Pure Appl. Algebra 180 (2003), no. 3, 221–241. Zbl1076.13001MR1966657DOI10.1016/S0022-4049(02)00250-5
- Anderson D.F., Livingston P.S., 10.1006/jabr.1998.7840, J. Algebra 217 (1999), no. 2, 434–447. Zbl1035.13004MR1700509DOI10.1006/jabr.1998.7840
- Atiyah M.F., Macdonald I.G., Introduction to Commutative Algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. Zbl0238.13001MR0242802
- Azarpanah F., Motamedi M., 10.1007/s10474-005-0205-z, Acta Math. Hungar. 108 (2005), no. 1–2, 25–36. Zbl1092.54007MR2155237DOI10.1007/s10474-005-0205-z
- Beck I., 10.1016/0021-8693(88)90202-5, J. Algebra 116 (1988), no. 1, 208–226. Zbl0654.13001MR0944156DOI10.1016/0021-8693(88)90202-5
- Biggs N., Algebraic Graph Theory, Cambridge University Press, Cambridge, 1993. Zbl0797.05032MR1271140
- Bondy J.A., Murty U.S.R., Graph Theory with Application, The Macmillan Press, New York, 1976. MR0411988
- Dheena P., Elavarasan B., 10.5666/KMJ.2009.49.2.283, Kyungpook Math. J. 49 (2009), no. 2, 283–288. Zbl1184.16048MR2554886DOI10.5666/KMJ.2009.49.2.283
- Engelking R., General Topology, Heldermann-Verlag, Berlin, 1989. Zbl0684.54001MR1039321
- Gillman L., Jerison M., 10.1111/j.2164-0947.1964.tb03479.x, Transactions of the New York Academy of Sciences 27 (1964), no. 1 Series II, 5–6. Zbl0327.46040MR0116199DOI10.1111/j.2164-0947.1964.tb03479.x
- Jinnah M.I., Mathew Sh.C., 10.1080/00927872.2011.591861, Comm. Algebra 40 (2012), no. 7, 2400–2404. Zbl1247.13007MR2948834DOI10.1080/00927872.2011.591861
- Levy R., Shapiro J., 10.1081/AGB-120013178, Comm. Algebra 30 (2002), no. 2, 745–750. Zbl1055.13007MR1883021DOI10.1081/AGB-120013178
- Maimani H.R., Salimi M., Sattari A., Yassemi S., 10.1016/j.jalgebra.2007.02.003, J. Algebra 319 (2008), no. 4, 1801–1808. Zbl1141.13008MR2383067DOI10.1016/j.jalgebra.2007.02.003
- Maimani H.R., Pournaki M.R., Tehranian A., Yassemi S., 10.1007/s13369-011-0096-y, Arab. J. Sci. Eng. 36 (2011), no. 6, 997–1011. MR2845527DOI10.1007/s13369-011-0096-y
- Mehdi-Nezhad E., Rahimi A.M., 10.2989/16073606.2014.981713, Quaest. Math. 38 (2015), 1–17. MR3420663DOI10.2989/16073606.2014.981713
- Moconja S.M., Petrović Z., 10.1017/S0004972710001875, Bull. Aust. Math. Soc. 83 (2011), no. 1, 11–21. Zbl1222.13002MR2765410DOI10.1017/S0004972710001875
- Mulay Sh.B., 10.1081/AGB-120004502, Comm. Algebra 30 (2002), no. 7, 3533–3558. Zbl1087.13500MR1915011DOI10.1081/AGB-120004502
- Petrovic Z.Z., Moconja S.M., On graphs associated to rings, Novi Sad J. Math. 38 (2008), no. 3, 33–38. Zbl1224.13001MR2598647
- Sharma P.K., Bhatwadekar S.M., 10.1006/jabr.1995.1236, J. Algebra 176 (1995), no. 1, 124–127. Zbl0838.05051MR1345297DOI10.1006/jabr.1995.1236
- Wang H.-J., 10.1016/j.laa.2008.08.026, Linear Algebra Appl. 430 (2009), no. 2, 633–641. Zbl1151.05019MR2469317DOI10.1016/j.laa.2008.08.026
- Willard S., General Topology, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1970. Zbl1052.54001MR0264581
- Ye M., Wu T., Liu Q., Yu H., 10.1080/00927872.2012.762924, Comm. Algebra 42 (2014), no. 6, 2476–2483. MR3169718DOI10.1080/00927872.2012.762924
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.