Nice connecting paths in connected components of sets of algebraic elements in a Banach algebra
E., Jr. Makai; Jaroslav Zemánek
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 3, page 821-828
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topReferences
top- B. Aupetit, E. Makai, Jr., M. Mbekhta, J. Zemánek, The connected components of the idempotents in the Calkin algebra, and their liftings, Operator Theory and Banach Algebras, Proc. Int. Conf. in Analysis, Rabat, 1999 M. Chidami et al. Theta, Bucharest (2003), 23-30. (2003) Zbl1084.46519MR2006311
- Boulmaarouf, Z., Miranda, M. Fernandez, Labrousse, J.-Ph., 10.1080/01630569708816746, Numer. Funct. Anal. Optimization 18 (1997), 55-63. (1997) MR1442018DOI10.1080/01630569708816746
- Esterle, J., 10.1112/blms/15.3.253, Bull. Lond. Math. Soc. 15 (1983), 253-254. (1983) Zbl0517.46034MR0697127DOI10.1112/blms/15.3.253
- Kovarik, Z. V., Similarity and interpolation between projectors, Acta Sci. Math. 39 (1977), 341-351. (1977) Zbl0392.47008MR0482324
- Maeda, S., On arcs in the space of projections of a -algebra, Math. Jap. 21 (1976), 371-374. (1976) Zbl0353.46051MR0454651
- E. Makai, Jr., Algebraic elements in Banach algebras (joint work with J. Zemánek), 6th Linear Algebra Workshop, Book of Abstracts Kranjska Gora (2011), p. 26. (2011)
- E. Makai, Jr., J. Zemánek, On the structure of the set of elements in a Banach algebra which satisfy a given polynomial equation, and their liftings. Available at www.renyi.mta.hu/ {makai}, .
- E. Makai, Jr., J. Zemánek, On polynomial connections between projections, Linear Algebra Appl. 126 (1989), 91-94. (1989) Zbl0714.47011MR1040774
- Trémon, M., On the degree of polynomials connecting two idempotents of a Banach algebra, Proc. R. Ir. Acad. Sect. A 95 (1995), 233-235. (1995) Zbl0853.46044MR1660382
- Tremon, M., Polynômes de degré minimum connectant deux projections dans une algèbre de Banach, Linear Algebra Appl. French 64 (1985), 115-132. (1985) Zbl0617.46054MR0776520
- Zemánek, J., 10.1112/blms/11.2.177, Bull. Lond. Math. Soc. 11 (1979), 177-183. (1979) Zbl0429.46029MR0541972DOI10.1112/blms/11.2.177