D-optimal and highly D-efficient designs with non-negatively correlated observations
Krystyna Katulska; Łukasz Smaga
Kybernetika (2016)
- Volume: 52, Issue: 4, page 575-588
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topKatulska, Krystyna, and Smaga, Łukasz. "D-optimal and highly D-efficient designs with non-negatively correlated observations." Kybernetika 52.4 (2016): 575-588. <http://eudml.org/doc/286794>.
@article{Katulska2016,
abstract = {In this paper we consider D-optimal and highly D-efficient chemical balance weighing designs. The errors are assumed to be equally non-negatively correlated and to have equal variances. Some necessary and sufficient conditions under which a design is D*-optimal design (regular D-optimal design) are proved. It is also shown that in many cases D*-optimal design does not exist. In many of those cases the designs constructed by Masaro and Wong (2008) and some new designs are shown to be highly D-efficient. Theoretical results are accompanied by numerical search, suggesting D-optimality of designs under consideration.},
author = {Katulska, Krystyna, Smaga, Łukasz},
journal = {Kybernetika},
keywords = {correlation; D-efficiency; D-optimal chemical balance weighing design; Hadamard matrix; simulated annealing algorithm; tabu search; correlation; D-efficiency; D-optimal chemical balance weighing design; Hadamard matrix; simulated annealing algorithm; tabu search},
language = {eng},
number = {4},
pages = {575-588},
publisher = {Institute of Information Theory and Automation AS CR},
title = {D-optimal and highly D-efficient designs with non-negatively correlated observations},
url = {http://eudml.org/doc/286794},
volume = {52},
year = {2016},
}
TY - JOUR
AU - Katulska, Krystyna
AU - Smaga, Łukasz
TI - D-optimal and highly D-efficient designs with non-negatively correlated observations
JO - Kybernetika
PY - 2016
PB - Institute of Information Theory and Automation AS CR
VL - 52
IS - 4
SP - 575
EP - 588
AB - In this paper we consider D-optimal and highly D-efficient chemical balance weighing designs. The errors are assumed to be equally non-negatively correlated and to have equal variances. Some necessary and sufficient conditions under which a design is D*-optimal design (regular D-optimal design) are proved. It is also shown that in many cases D*-optimal design does not exist. In many of those cases the designs constructed by Masaro and Wong (2008) and some new designs are shown to be highly D-efficient. Theoretical results are accompanied by numerical search, suggesting D-optimality of designs under consideration.
LA - eng
KW - correlation; D-efficiency; D-optimal chemical balance weighing design; Hadamard matrix; simulated annealing algorithm; tabu search; correlation; D-efficiency; D-optimal chemical balance weighing design; Hadamard matrix; simulated annealing algorithm; tabu search
UR - http://eudml.org/doc/286794
ER -
References
top- Angelis, L., Bora-Senta, E., Moyssiadis, C., 10.1016/s0167-9473(01)00011-1, Comput. Statist. Data Anal. 37 (2001), 275-296. Zbl0990.62061MR1862514DOI10.1016/s0167-9473(01)00011-1
- Banerjee, K. S., Weighing Designs for Chemistry, Medicine, Economics, Operations Research, Statistics., Marcel Dekker Inc., New York 1975. Zbl0334.62030MR0458751
- Bora-Senta, E., Moyssiadis, C., An algorithm for finding exact D- and A-optimal designs with observations and two-level factors in the presence of autocorrelated errors., J. Combinat. Math. Combinat. Comput. 30 (1999), 149-170. Zbl0937.62074MR1705339
- Bulutoglu, D. A., Ryan, K. J., 10.1016/j.jspi.2008.05.012, J. Statist. Plann. Inference 139 (2009), 16-22. Zbl1284.62473MR2460547DOI10.1016/j.jspi.2008.05.012
- Ceranka, B., Graczyk, M., Optimal chemical balance weighing designs for objects., Kybernetika 39 (2003), 333-340. Zbl1248.62128MR1995737
- Ceranka, B., Graczyk, M., Robustness optimal spring balance weighing designs for estimation total weight., Kybernetika 47 (2011), 902-908. Zbl1274.62492MR2907850
- Ceranka, B., Graczyk, M., Katulska, K., 10.1016/j.spl.2005.09.012, Statist. Probab. Lett. 76 (2006), 653-665. Zbl1090.62074MR2234783DOI10.1016/j.spl.2005.09.012
- Ceranka, B., Graczyk, M., Katulska, K., 10.1016/j.csda.2006.10.021, Comput. Statist. Data Analysis 51 (2007), 5821-5827. MR2407680DOI10.1016/j.csda.2006.10.021
- Cheng, C. S., 10.1080/15598608.2014.840520, J. Statist. Theory Practice 8 (2014), 83-99. MR3196641DOI10.1080/15598608.2014.840520
- Domijan, K., tabuSearch: R based tabu search algorithm. R package version 1.1., (2012)
- Ehlich, H., 10.1007/bf01111249, Math. Zeitschrift 83 (1964), 123-132. Zbl0115.24704MR0160792DOI10.1007/bf01111249
- Ehlich, H., 10.1007/bf01109911, Math. Zeitschrift 84 (1964), 438-447. MR0168573DOI10.1007/bf01109911
- Galil, Z., Kiefer, J., 10.1214/aos/1176345202, Ann. Statist. 8 (1980), 1293-1306. Zbl0598.62087MR0594646DOI10.1214/aos/1176345202
- Graczyk, M., A-optimal biased spring balance weighing design., Kybernetika 47 (2011), 893-901. Zbl1274.62495MR2907849
- Graczyk, M., 10.2478/bile-2013-0014, Biometr. Lett. 50 (2013), 15-26. DOI10.2478/bile-2013-0014
- Harman, R., Bachratá, A., Filová, L., 10.1002/asmb.2117, Appl. Stochast. Models in Business and Industry 32 (2015), 1, 3-17. MR3460885DOI10.1002/asmb.2117
- Jacroux, M., Wong, C.S., Masaro, J.C., 10.1016/0378-3758(83)90041-1, J. Statist. Planning Inference 8 (1983), 231-240. Zbl0531.62072MR0720154DOI10.1016/0378-3758(83)90041-1
- Jenkins, G. M., Chanmugam, J., The estimation of slope when the errors are autocorrelated., J. Royal Statist. Soc., Ser. B (Statistical Methodology) 24 (1962), 199-214. Zbl0116.11401MR0138154
- Jung, J. S., Yum, B. J., 10.1016/0167-9473(95)00014-3, Comput. Statist. Data Analysis 21 (1996), 181-191. Zbl0900.62403MR1394535DOI10.1016/0167-9473(95)00014-3
- Katulska, K., Smaga, Ł., 10.1080/03610926.2011.608587, Comm. Statist. - Theory and Methods 41 (2012), 2445-2455. Zbl1271.62175MR3003795DOI10.1080/03610926.2011.608587
- Katulska, K., Smaga, Ł., 10.1007/s00184-012-0394-8, Metrika 76 (2013), 393-407. MR3041462DOI10.1007/s00184-012-0394-8
- Katulska, K., Smaga, Ł., A note on D-optimal chemical balance weighing designs and their applications., Colloquium Biometricum 43 (2013), 37-45.
- Katulska, K., Smaga, Ł., On highly D-efficient designs with non-negatively correlated observations., REVSTAT - Statist. J. (accepted).
- Li, C. H., Yang, S. Y., 10.1016/j.laa.2004.11.020, Linear Algebra Appl. 400 (2005), 279-290. MR2132491DOI10.1016/j.laa.2004.11.020
- Masaro, J., Wong, C. S., 10.1016/j.jspi.2008.03.012, J. Statist. Planning Inference 138 (2008), 4093-4106. Zbl1147.62062MR2455990DOI10.1016/j.jspi.2008.03.012
- Neubauer, M. G., Pace, R. G., 10.1016/j.laa.2009.12.007, Linear Algebra Appl. 432 (2010), 2634-2657. Zbl1185.62134MR2608182DOI10.1016/j.laa.2009.12.007
- Pukelsheim, F., Optimal Design of Experiments., John Wiley and Sons Inc., New York 1993. Zbl1101.62063MR1211416
- Team, R Core, R: A language and environment for statistical computing., R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/ (2015).
- Smaga, Ł., D-optimal Chemical Balance Weighing Designs with Various Forms of the Covariance Matrix of Random Errors., Ph.D. Thesis, Adam Mickiewicz University, 2013 (in polish).
- Smaga, Ł., 10.1016/j.spl.2014.04.027, Statist. Probab. Lett. 92 (2014), 12-16. MR3230466DOI10.1016/j.spl.2014.04.027
- Smaga, Ł., 10.1016/j.laa.2014.08.022, Linear Algebra Appl. 473 (2015), 297-315. MR3338337DOI10.1016/j.laa.2014.08.022
- Wojtas, M., 10.4064/cm-12-1-73-83, Colloquium Mathematicum 12 (1964), 73-83. Zbl0126.02604MR0168574DOI10.4064/cm-12-1-73-83
- Yang, C. H., 10.1090/s0025-5718-1968-0225476-4, Math. Computat. 22 (1968), 174-180. Zbl0167.01703MR0225476DOI10.1090/s0025-5718-1968-0225476-4
- Yeh, H. G., Huang, M. N. Lo, 10.1007/s001840400336, Metrika 61 (2005), 261-275. Zbl1079.62078MR2230375DOI10.1007/s001840400336
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.