D-optimal and highly D-efficient designs with non-negatively correlated observations

Krystyna Katulska; Łukasz Smaga

Kybernetika (2016)

  • Volume: 52, Issue: 4, page 575-588
  • ISSN: 0023-5954

Abstract

top
In this paper we consider D-optimal and highly D-efficient chemical balance weighing designs. The errors are assumed to be equally non-negatively correlated and to have equal variances. Some necessary and sufficient conditions under which a design is D*-optimal design (regular D-optimal design) are proved. It is also shown that in many cases D*-optimal design does not exist. In many of those cases the designs constructed by Masaro and Wong (2008) and some new designs are shown to be highly D-efficient. Theoretical results are accompanied by numerical search, suggesting D-optimality of designs under consideration.

How to cite

top

Katulska, Krystyna, and Smaga, Łukasz. "D-optimal and highly D-efficient designs with non-negatively correlated observations." Kybernetika 52.4 (2016): 575-588. <http://eudml.org/doc/286794>.

@article{Katulska2016,
abstract = {In this paper we consider D-optimal and highly D-efficient chemical balance weighing designs. The errors are assumed to be equally non-negatively correlated and to have equal variances. Some necessary and sufficient conditions under which a design is D*-optimal design (regular D-optimal design) are proved. It is also shown that in many cases D*-optimal design does not exist. In many of those cases the designs constructed by Masaro and Wong (2008) and some new designs are shown to be highly D-efficient. Theoretical results are accompanied by numerical search, suggesting D-optimality of designs under consideration.},
author = {Katulska, Krystyna, Smaga, Łukasz},
journal = {Kybernetika},
keywords = {correlation; D-efficiency; D-optimal chemical balance weighing design; Hadamard matrix; simulated annealing algorithm; tabu search; correlation; D-efficiency; D-optimal chemical balance weighing design; Hadamard matrix; simulated annealing algorithm; tabu search},
language = {eng},
number = {4},
pages = {575-588},
publisher = {Institute of Information Theory and Automation AS CR},
title = {D-optimal and highly D-efficient designs with non-negatively correlated observations},
url = {http://eudml.org/doc/286794},
volume = {52},
year = {2016},
}

TY - JOUR
AU - Katulska, Krystyna
AU - Smaga, Łukasz
TI - D-optimal and highly D-efficient designs with non-negatively correlated observations
JO - Kybernetika
PY - 2016
PB - Institute of Information Theory and Automation AS CR
VL - 52
IS - 4
SP - 575
EP - 588
AB - In this paper we consider D-optimal and highly D-efficient chemical balance weighing designs. The errors are assumed to be equally non-negatively correlated and to have equal variances. Some necessary and sufficient conditions under which a design is D*-optimal design (regular D-optimal design) are proved. It is also shown that in many cases D*-optimal design does not exist. In many of those cases the designs constructed by Masaro and Wong (2008) and some new designs are shown to be highly D-efficient. Theoretical results are accompanied by numerical search, suggesting D-optimality of designs under consideration.
LA - eng
KW - correlation; D-efficiency; D-optimal chemical balance weighing design; Hadamard matrix; simulated annealing algorithm; tabu search; correlation; D-efficiency; D-optimal chemical balance weighing design; Hadamard matrix; simulated annealing algorithm; tabu search
UR - http://eudml.org/doc/286794
ER -

References

top
  1. Angelis, L., Bora-Senta, E., Moyssiadis, C., 10.1016/s0167-9473(01)00011-1, Comput. Statist. Data Anal. 37 (2001), 275-296. Zbl0990.62061MR1862514DOI10.1016/s0167-9473(01)00011-1
  2. Banerjee, K. S., Weighing Designs for Chemistry, Medicine, Economics, Operations Research, Statistics., Marcel Dekker Inc., New York 1975. Zbl0334.62030MR0458751
  3. Bora-Senta, E., Moyssiadis, C., An algorithm for finding exact D- and A-optimal designs with n observations and k two-level factors in the presence of autocorrelated errors., J. Combinat. Math. Combinat. Comput. 30 (1999), 149-170. Zbl0937.62074MR1705339
  4. Bulutoglu, D. A., Ryan, K. J., 10.1016/j.jspi.2008.05.012, J. Statist. Plann. Inference 139 (2009), 16-22. Zbl1284.62473MR2460547DOI10.1016/j.jspi.2008.05.012
  5. Ceranka, B., Graczyk, M., Optimal chemical balance weighing designs for v + 1 objects., Kybernetika 39 (2003), 333-340. Zbl1248.62128MR1995737
  6. Ceranka, B., Graczyk, M., Robustness optimal spring balance weighing designs for estimation total weight., Kybernetika 47 (2011), 902-908. Zbl1274.62492MR2907850
  7. Ceranka, B., Graczyk, M., Katulska, K., 10.1016/j.spl.2005.09.012, Statist. Probab. Lett. 76 (2006), 653-665. Zbl1090.62074MR2234783DOI10.1016/j.spl.2005.09.012
  8. Ceranka, B., Graczyk, M., Katulska, K., 10.1016/j.csda.2006.10.021, Comput. Statist. Data Analysis 51 (2007), 5821-5827. MR2407680DOI10.1016/j.csda.2006.10.021
  9. Cheng, C. S., 10.1080/15598608.2014.840520, J. Statist. Theory Practice 8 (2014), 83-99. MR3196641DOI10.1080/15598608.2014.840520
  10. Domijan, K., tabuSearch: R based tabu search algorithm. R package version 1.1., (2012) 
  11. Ehlich, H., 10.1007/bf01111249, Math. Zeitschrift 83 (1964), 123-132. Zbl0115.24704MR0160792DOI10.1007/bf01111249
  12. Ehlich, H., 10.1007/bf01109911, Math. Zeitschrift 84 (1964), 438-447. MR0168573DOI10.1007/bf01109911
  13. Galil, Z., Kiefer, J., 10.1214/aos/1176345202, Ann. Statist. 8 (1980), 1293-1306. Zbl0598.62087MR0594646DOI10.1214/aos/1176345202
  14. Graczyk, M., A-optimal biased spring balance weighing design., Kybernetika 47 (2011), 893-901. Zbl1274.62495MR2907849
  15. Graczyk, M., 10.2478/bile-2013-0014, Biometr. Lett. 50 (2013), 15-26. DOI10.2478/bile-2013-0014
  16. Harman, R., Bachratá, A., Filová, L., 10.1002/asmb.2117, Appl. Stochast. Models in Business and Industry 32 (2015), 1, 3-17. MR3460885DOI10.1002/asmb.2117
  17. Jacroux, M., Wong, C.S., Masaro, J.C., 10.1016/0378-3758(83)90041-1, J. Statist. Planning Inference 8 (1983), 231-240. Zbl0531.62072MR0720154DOI10.1016/0378-3758(83)90041-1
  18. Jenkins, G. M., Chanmugam, J., The estimation of slope when the errors are autocorrelated., J. Royal Statist. Soc., Ser. B (Statistical Methodology) 24 (1962), 199-214. Zbl0116.11401MR0138154
  19. Jung, J. S., Yum, B. J., 10.1016/0167-9473(95)00014-3, Comput. Statist. Data Analysis 21 (1996), 181-191. Zbl0900.62403MR1394535DOI10.1016/0167-9473(95)00014-3
  20. Katulska, K., Smaga, Ł., 10.1080/03610926.2011.608587, Comm. Statist. - Theory and Methods 41 (2012), 2445-2455. Zbl1271.62175MR3003795DOI10.1080/03610926.2011.608587
  21. Katulska, K., Smaga, Ł., 10.1007/s00184-012-0394-8, Metrika 76 (2013), 393-407. MR3041462DOI10.1007/s00184-012-0394-8
  22. Katulska, K., Smaga, Ł., A note on D-optimal chemical balance weighing designs and their applications., Colloquium Biometricum 43 (2013), 37-45. 
  23. Katulska, K., Smaga, Ł., On highly D-efficient designs with non-negatively correlated observations., REVSTAT - Statist. J. (accepted). 
  24. Li, C. H., Yang, S. Y., 10.1016/j.laa.2004.11.020, Linear Algebra Appl. 400 (2005), 279-290. MR2132491DOI10.1016/j.laa.2004.11.020
  25. Masaro, J., Wong, C. S., 10.1016/j.jspi.2008.03.012, J. Statist. Planning Inference 138 (2008), 4093-4106. Zbl1147.62062MR2455990DOI10.1016/j.jspi.2008.03.012
  26. Neubauer, M. G., Pace, R. G., 10.1016/j.laa.2009.12.007, Linear Algebra Appl. 432 (2010), 2634-2657. Zbl1185.62134MR2608182DOI10.1016/j.laa.2009.12.007
  27. Pukelsheim, F., Optimal Design of Experiments., John Wiley and Sons Inc., New York 1993. Zbl1101.62063MR1211416
  28. Team, R Core, R: A language and environment for statistical computing., R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/ (2015). 
  29. Smaga, Ł., D-optimal Chemical Balance Weighing Designs with Various Forms of the Covariance Matrix of Random Errors., Ph.D. Thesis, Adam Mickiewicz University, 2013 (in polish). 
  30. Smaga, Ł., 10.1016/j.spl.2014.04.027, Statist. Probab. Lett. 92 (2014), 12-16. MR3230466DOI10.1016/j.spl.2014.04.027
  31. Smaga, Ł., 10.1016/j.laa.2014.08.022, Linear Algebra Appl. 473 (2015), 297-315. MR3338337DOI10.1016/j.laa.2014.08.022
  32. Wojtas, M., 10.4064/cm-12-1-73-83, Colloquium Mathematicum 12 (1964), 73-83. Zbl0126.02604MR0168574DOI10.4064/cm-12-1-73-83
  33. Yang, C. H., 10.1090/s0025-5718-1968-0225476-4, Math. Computat. 22 (1968), 174-180. Zbl0167.01703MR0225476DOI10.1090/s0025-5718-1968-0225476-4
  34. Yeh, H. G., Huang, M. N. Lo, 10.1007/s001840400336, Metrika 61 (2005), 261-275. Zbl1079.62078MR2230375DOI10.1007/s001840400336

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.