On some properties of the Laplacian matrix revealed by the RCM algorithm
Francisco Pedroche; Miguel Rebollo; Carlos Carrascosa; Alberto Palomares
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 3, page 603-620
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topPedroche, Francisco, et al. "On some properties of the Laplacian matrix revealed by the RCM algorithm." Czechoslovak Mathematical Journal 66.3 (2016): 603-620. <http://eudml.org/doc/286796>.
@article{Pedroche2016,
abstract = {In this paper we present some theoretical results about the irreducibility of the Laplacian matrix ordered by the Reverse Cuthill-McKee (RCM) algorithm. We consider undirected graphs with no loops consisting of some connected components. RCM is a well-known scheme for numbering the nodes of a network in such a way that the corresponding adjacency matrix has a narrow bandwidth. Inspired by some properties of the eigenvectors of a Laplacian matrix, we derive some properties based on row sums of a Laplacian matrix that was reordered by the RCM algorithm. One of the theoretical results serves as a basis for writing an easy MATLAB code to detect connected components, by using the function ``symrcm'' of MATLAB. Some examples illustrate the theoretical results.},
author = {Pedroche, Francisco, Rebollo, Miguel, Carrascosa, Carlos, Palomares, Alberto},
journal = {Czechoslovak Mathematical Journal},
keywords = {ordering algorithm; reverse Cuthill-McKee algorithm; graph partitioning; Laplacian matrix},
language = {eng},
number = {3},
pages = {603-620},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On some properties of the Laplacian matrix revealed by the RCM algorithm},
url = {http://eudml.org/doc/286796},
volume = {66},
year = {2016},
}
TY - JOUR
AU - Pedroche, Francisco
AU - Rebollo, Miguel
AU - Carrascosa, Carlos
AU - Palomares, Alberto
TI - On some properties of the Laplacian matrix revealed by the RCM algorithm
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 3
SP - 603
EP - 620
AB - In this paper we present some theoretical results about the irreducibility of the Laplacian matrix ordered by the Reverse Cuthill-McKee (RCM) algorithm. We consider undirected graphs with no loops consisting of some connected components. RCM is a well-known scheme for numbering the nodes of a network in such a way that the corresponding adjacency matrix has a narrow bandwidth. Inspired by some properties of the eigenvectors of a Laplacian matrix, we derive some properties based on row sums of a Laplacian matrix that was reordered by the RCM algorithm. One of the theoretical results serves as a basis for writing an easy MATLAB code to detect connected components, by using the function ``symrcm'' of MATLAB. Some examples illustrate the theoretical results.
LA - eng
KW - ordering algorithm; reverse Cuthill-McKee algorithm; graph partitioning; Laplacian matrix
UR - http://eudml.org/doc/286796
ER -
References
top- Benzi, M., Szyld, D. B., Duin, A. C. N. van, 10.1137/S1064827597326845, SIAM J. Sci. Comput. 20 (1999), 1652-1670. (1999) MR1694677DOI10.1137/S1064827597326845
- Boley, D., Ranjan, G., Zhang, Z.-L., Commute times for a directed graph using an asymmetric Laplacian, Linear Algebra Appl. 435 (2011), 224-242. (2011) Zbl1226.05125MR2782776
- Bolten, M., Friedhoff, S., Frommer, A., Heming, M., Kahl, K., Algebraic multigrid methods for Laplacians of graphs, Linear Algebra Appl. 434 (2011), 2225-2243. (2011) Zbl1217.65063MR2776793
- Cuthill, E., McKee, J., 10.1145/800195.805928, Proc. 24th Nat. Conf. of the ACM, ACM Publ P-69, Association for Computing Machinery, New York, 1969 157-172 doi:10.1145/800195.805928. DOI10.1145/800195.805928
- Abreu, N. M. M. de, 10.1016/j.laa.2006.08.017, Linear Algebra Appl. 423, (2007), 53-73. (2007) Zbl1115.05056MR2312323DOI10.1016/j.laa.2006.08.017
- Corso, G. M. Del, Romani, F., 10.1023/A:1014082430392, Numer. Algorithms 28 (2001), 117-136. (2001) MR1887751DOI10.1023/A:1014082430392
- Fiedler, M., Algebraic connectivity of graphs, Czech. Math. J. 23 (1973), 298-305. (1973) Zbl0265.05119MR0318007
- Fiedler, M., A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory, Czech. Math. J. 25 (1975), 619-633. (1975) Zbl0437.15004MR0387321
- Fortunato, S., 10.1016/j.physrep.2009.11.002, Phys. Rep. 486 (2010), 75-174. (2010) MR2580414DOI10.1016/j.physrep.2009.11.002
- George, J. A., Computer Implementation of the Finite Element Method, Doctoral Dissertation, Stanford University, Stanford (1971). (1971)
- George, A., Liu, J. W.-H., Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall Series in Computational Mathematics Prentice-Hall, Englewood Cliffs (1981). (1981) Zbl0516.65010MR0646786
- Gilbert, J. R., Moler, C., Schreiber, R., 10.1137/0613024, SIAM J. Matrix Anal. Appl. 13 (1992), 333-356. (1992) Zbl0752.65037MR1146669DOI10.1137/0613024
- Gross, J. L., Yellen, J., eds., Handbook of Graph Theory, Discrete Mathematics and Its Applications CRC Press, Boca Raton (2004). (2004) MR2035186
- Horn, R. A., Johnson, C. R., Matrix Analysis, Cambridge University Press, Cambridge (1985). (1985) Zbl0576.15001MR0832183
- Jungnickel, D., 10.1007/978-3-540-72780-4_11, Algorithms and Computation in Mathematics 5 Springer, Berlin (2008). (2008) Zbl1126.68058MR2363884DOI10.1007/978-3-540-72780-4_11
- Juvan, M., Mohar, B., 10.1002/jgt.3190170313, J. Graph Theory, 17 (1993), 393-407. (1993) Zbl0785.05077MR1220999DOI10.1002/jgt.3190170313
- Kumfert, G., Pothen, A., 10.1007/BF02510240, BIT 37 (1997), 559-590. (1997) Zbl0891.65043MR1483674DOI10.1007/BF02510240
- Liu, W-H., Sherman, A. H., 10.1137/0713020, SIAM J. Numer. Anal. 13 (1976), 198-213. (1976) MR0501813DOI10.1137/0713020
- Mohar, B., The Laplacian spectrum of graphs, Graph theory, Combinatorics, and Applications Vol. 2. Proc. Sixth Quadrennial International Conf. on the Theory and Applications of Graphs, Kalamazoo, Michigan, 1988 Y. Alavi et all John Wiley & Sons, New York (1991), 871-898. (1991) Zbl0840.05059MR1170831
- Molitierno, J. J., The spectral radius of submatrices of Laplacian matrices for graphs with cut vertices, Linear Algebra Appl. 428 (2008), 1987-1999. (2008) Zbl1137.05045MR2401634
- Mueller, C., Martin, B., Lumsdaine, A., 10.1109/APVIS.2007.329289, Visualization Asia-Pacific Symposium on Visualization 2007, Sydney, Australia (2007), 141-148 doi: 10.1109/APVIS.2007.329289. (2007) DOI10.1109/APVIS.2007.329289
- Nascimento, M. C. V., Carvalho, A. De, 10.1016/j.ejor.2010.08.012, Eur. J. Oper. Res. 211 (2011), 221-231. (2011) MR2774401DOI10.1016/j.ejor.2010.08.012
- Newman, M. E. J., 10.1093/acprof:oso/9780199206650.003.0001, Oxford University Press, Oxford (2010). (2010) Zbl1195.94003MR2676073DOI10.1093/acprof:oso/9780199206650.003.0001
- Pothen, A., Simon, H. D., Liou, K. P., 10.1137/0611030, SIAM J. Matrix Anal. Appl. 11 (1990), 430-452. (1990) MR1054210DOI10.1137/0611030
- Rebollo, M., Carrascosa, C., Palomares, A., Pedroche, F., Some examples of detection of connected components in undirected graphs by using the Laplacian matrix and the RCM algorithm, Int. J. Complex Systems in Science 2 (2012), 11-15. (2012)
- Reid, J. K., Scott, J.A., 10.1137/050629938, Siam J. Matrix Anal. Appl. 28 (2006), 805-821. (2006) Zbl1123.65027MR2262982DOI10.1137/050629938
- Saad, Y., Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied Mathematics Philadelphia (2003). (2003) Zbl1031.65046MR1990645
- Schaeffer, S. E., 10.1016/j.cosrev.2007.05.001, Comput. Sci. Rev. 1 (2007), 27-64. (2007) Zbl1302.68237DOI10.1016/j.cosrev.2007.05.001
- Tarjan, R., 10.1137/0201010, SIAM J. Comput. 1 (1972), 146-160. (1972) Zbl0251.05107MR0304178DOI10.1137/0201010
- Varga, R. S., 10.1007/978-3-642-05156-2, Springer Series in Computational Mathematics 27 Springer, Berlin (2000). (2000) Zbl0998.65505MR1753713DOI10.1007/978-3-642-05156-2
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.