Lower bounds for the largest eigenvalue of the gcd matrix on
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 3, page 1027-1038
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMerikoski, Jorma K.. "Lower bounds for the largest eigenvalue of the gcd matrix on $\lbrace 1,2,\dots ,n\rbrace $." Czechoslovak Mathematical Journal 66.3 (2016): 1027-1038. <http://eudml.org/doc/286799>.
@article{Merikoski2016,
abstract = {Consider the $n\times n$ matrix with $(i,j)$’th entry $\gcd \{(i,j)\}$. Its largest eigenvalue $\lambda _n$ and sum of entries $s_n$ satisfy $\lambda _n>s_n/n$. Because $s_n$ cannot be expressed algebraically as a function of $n$, we underestimate it in several ways. In examples, we compare the bounds so obtained with one another and with a bound from S. Hong, R. Loewy (2004). We also conjecture that $\lambda _n>6\pi ^\{-2\}n\log \{n\}$ for all $n$. If $n$ is large enough, this follows from F. Balatoni (1969).},
author = {Merikoski, Jorma K.},
journal = {Czechoslovak Mathematical Journal},
keywords = {eigenvalue bounds; greatest common divisor matrix},
language = {eng},
number = {3},
pages = {1027-1038},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Lower bounds for the largest eigenvalue of the gcd matrix on $\lbrace 1,2,\dots ,n\rbrace $},
url = {http://eudml.org/doc/286799},
volume = {66},
year = {2016},
}
TY - JOUR
AU - Merikoski, Jorma K.
TI - Lower bounds for the largest eigenvalue of the gcd matrix on $\lbrace 1,2,\dots ,n\rbrace $
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 3
SP - 1027
EP - 1038
AB - Consider the $n\times n$ matrix with $(i,j)$’th entry $\gcd {(i,j)}$. Its largest eigenvalue $\lambda _n$ and sum of entries $s_n$ satisfy $\lambda _n>s_n/n$. Because $s_n$ cannot be expressed algebraically as a function of $n$, we underestimate it in several ways. In examples, we compare the bounds so obtained with one another and with a bound from S. Hong, R. Loewy (2004). We also conjecture that $\lambda _n>6\pi ^{-2}n\log {n}$ for all $n$. If $n$ is large enough, this follows from F. Balatoni (1969).
LA - eng
KW - eigenvalue bounds; greatest common divisor matrix
UR - http://eudml.org/doc/286799
ER -
References
top- Altınışık, E., Keskin, A., Yıldız, M., Demirbüken, M., On a conjecture of Ilmonen, Haukkanen and Merikoski concerning the smallest eigenvalues of certain GCD related matrices, Linear Algebra Appl. 493 (2016), 1-13. (2016) Zbl1334.15079MR3452722
- Balatoni, F., On the eigenvalues of the matrix of the Smith determinant, Mat. Lapok 20 (1969), 397-403 Hungarian. (1969) Zbl0213.32303MR0291186
- Beslin, S., Ligh, S., Greatest common divisor matrices, Linear Algebra Appl. 118 (1989), 69-76. (1989) Zbl0672.15005MR0995366
- Hong, S., Loewy, R., 10.1017/S0017089504001995, Glasg. Math. J. 46 (2004), 551-569. (2004) Zbl1083.11021MR2094810DOI10.1017/S0017089504001995
- Horn, R. A., Johnson, C. R., Matrix Analysis, Cambridge University Press, Cambridge (2013). (2013) Zbl1267.15001MR2978290
- Mitrinović, D. S., Sándor, J., Crstici, B., Handbook of Number Theory, Mathematics and Its Applications 351 Kluwer Academic Publishers, Dordrecht (1995). (1995) Zbl0862.11001MR1374329
- Smith, H. J. S., On the value of a certain arithmetical determinant, Proc. L. M. S. 7 208-213 (1875). (1875) MR1575630
- Tóth, L., A survey of gcd-sum functions, J. Integer Seq. (electronic only) 13 (2010), Article ID 10.8.1, 23 pages. (2010) Zbl1206.11118MR2718232
- Yaglom, A. M., Yaglom, I. M., Non-elementary Problems in an Elementary Exposition, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moskva (1954), Russian. (1954) MR0070671
- Weisstein, E. W., Faulhaber's Formula, From Mathworld---A Wolfram Web Resource, http://mathworld.wolfram.com/FaulhabersFormula.html.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.