Computing the determinantal representations of hyperbolic forms
Mao-Ting Chien; Hiroshi Nakazato
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 3, page 633-651
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topChien, Mao-Ting, and Nakazato, Hiroshi. "Computing the determinantal representations of hyperbolic forms." Czechoslovak Mathematical Journal 66.3 (2016): 633-651. <http://eudml.org/doc/286803>.
@article{Chien2016,
abstract = {The numerical range of an $n\times n$ matrix is determined by an $n$ degree hyperbolic ternary form. Helton-Vinnikov confirmed conversely that an $n$ degree hyperbolic ternary form admits a symmetric determinantal representation. We determine the types of Riemann theta functions appearing in the Helton-Vinnikov formula for the real symmetric determinantal representation of hyperbolic forms for the genus $g=1$. We reformulate the Fiedler-Helton-Vinnikov formulae for the genus $g=0,1$, and present an elementary computation of the reformulation. Several examples are provided for computing the real symmetric matrices using the reformulation.},
author = {Chien, Mao-Ting, Nakazato, Hiroshi},
journal = {Czechoslovak Mathematical Journal},
keywords = {determinantal representation; hyperbolic form; Riemann theta function; numerical range},
language = {eng},
number = {3},
pages = {633-651},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Computing the determinantal representations of hyperbolic forms},
url = {http://eudml.org/doc/286803},
volume = {66},
year = {2016},
}
TY - JOUR
AU - Chien, Mao-Ting
AU - Nakazato, Hiroshi
TI - Computing the determinantal representations of hyperbolic forms
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 3
SP - 633
EP - 651
AB - The numerical range of an $n\times n$ matrix is determined by an $n$ degree hyperbolic ternary form. Helton-Vinnikov confirmed conversely that an $n$ degree hyperbolic ternary form admits a symmetric determinantal representation. We determine the types of Riemann theta functions appearing in the Helton-Vinnikov formula for the real symmetric determinantal representation of hyperbolic forms for the genus $g=1$. We reformulate the Fiedler-Helton-Vinnikov formulae for the genus $g=0,1$, and present an elementary computation of the reformulation. Several examples are provided for computing the real symmetric matrices using the reformulation.
LA - eng
KW - determinantal representation; hyperbolic form; Riemann theta function; numerical range
UR - http://eudml.org/doc/286803
ER -
References
top- Chien, M. T., Nakazato, H., 10.1080/03081087.2014.947982, Linear Multilinear Algebra 63 (2015), 1501-1519. (2015) Zbl1314.14056MR3304989DOI10.1080/03081087.2014.947982
- Chien, M. T., Nakazato, H., 10.15352/bjma/1381782099, Banach J. Math. Anal. 8 (2014), 269-278. (2014) Zbl1283.15025MR3161694DOI10.15352/bjma/1381782099
- Chien, M. T., Nakazato, H., Singular points of cyclic weighted shift matrices, Linear Algebra Appl. 439 (2013), 4090-4100. (2013) Zbl1283.15117MR3133478
- Chien, M. T., Nakazato, H., Reduction of the -numerical range to the classical numerical range, Linear Algebra Appl. 434 (2011), 615-624. (2011) Zbl1210.15023MR2746068
- Deconinck, B., Heil, M., Bobenko, A., Hoeij, M. van, Schmies, M., 10.1090/S0025-5718-03-01609-0, Math. Comput. 73 (2004), 1417-1442. (2004) MR2047094DOI10.1090/S0025-5718-03-01609-0
- Deconinck, B., Hoeji, M. van, Computing Riemann matrices of algebraic curves, Physica D 152-153 (2001), 28-46. (2001) MR1837895
- Fiedler, M., Pencils of real symmetric matrices and real algebraic curves, Linear Algebra Appl. 141 (1990), 53-60. (1990) Zbl0709.15009MR1076103
- Fiedler, M., 10.1016/0024-3795(81)90169-5, Linear Algebra Appl. 37 (1981), 81-96. (1981) Zbl0452.15024MR0636211DOI10.1016/0024-3795(81)90169-5
- Helton, J. W., Spitkovsky, I. M., 10.7153/oam-06-41, Oper. Matrices 6 (2012), 607-611. (2012) Zbl1270.15014MR2987030DOI10.7153/oam-06-41
- Helton, J. W., Vinnikov, V., 10.1002/cpa.20155, Commun. Pure Appl. Math. 60 (2007), 654-674. (2007) MR2292953DOI10.1002/cpa.20155
- Hurwitz, A., Courant, R., Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen, Grundlehren der mathematischen Wissenschaften. Band 3 Springer, Berlin German (1964). (1964) Zbl0135.12101MR0173749
- Kippenhahn, R., 10.1002/mana.19510060306, German Math. Nachr. 6 (1951), 193-228. (1951) Zbl0044.16201MR0059242DOI10.1002/mana.19510060306
- Lax, P. D., Differential equations, difference equations and matrix theory, Commun. Pure Appl. Math. 11 (1958), 175-194. (1958) Zbl0086.01603MR0098110
- Namba, M., Geometry of Projective Algebraic Curves, Pure and Applied Mathematics 88 Marcel Dekker, New York (1984). (1984) Zbl0556.14012MR0768929
- Plaumann, D., Sturmfels, B., Vinzant, C., Computing linear matrix representations of Helton-Vinnikov curves, H. Dym et al. Mathematical Methods in Systems, Optimization, and Control Festschrift in honor of J. William Helton. Operator Theory: Advances and Applications 222 Birkhäuser, Basel 259-277 (2012). (2012) Zbl1328.14093MR2962788
- Walker, R. J., Algebraic Curves, Princeton Mathematical Series 13 Princeton University Press, Princeton (1950). (1950) Zbl0039.37701MR0033083
- Wang, Z. X., Guo, D. R., Special Functions, World Scientific Publishing, Teaneck (1989). (1989) Zbl0724.33001MR1034956
- Wolfram, S., The Mathematica Book, Wolfram Media, Cambridge University Press, Cambridge (1996). (1996) Zbl0878.65001MR1404696
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.