Computing the determinantal representations of hyperbolic forms

Mao-Ting Chien; Hiroshi Nakazato

Czechoslovak Mathematical Journal (2016)

  • Volume: 66, Issue: 3, page 633-651
  • ISSN: 0011-4642

Abstract

top
The numerical range of an n × n matrix is determined by an n degree hyperbolic ternary form. Helton-Vinnikov confirmed conversely that an n degree hyperbolic ternary form admits a symmetric determinantal representation. We determine the types of Riemann theta functions appearing in the Helton-Vinnikov formula for the real symmetric determinantal representation of hyperbolic forms for the genus g = 1 . We reformulate the Fiedler-Helton-Vinnikov formulae for the genus g = 0 , 1 , and present an elementary computation of the reformulation. Several examples are provided for computing the real symmetric matrices using the reformulation.

How to cite

top

Chien, Mao-Ting, and Nakazato, Hiroshi. "Computing the determinantal representations of hyperbolic forms." Czechoslovak Mathematical Journal 66.3 (2016): 633-651. <http://eudml.org/doc/286803>.

@article{Chien2016,
abstract = {The numerical range of an $n\times n$ matrix is determined by an $n$ degree hyperbolic ternary form. Helton-Vinnikov confirmed conversely that an $n$ degree hyperbolic ternary form admits a symmetric determinantal representation. We determine the types of Riemann theta functions appearing in the Helton-Vinnikov formula for the real symmetric determinantal representation of hyperbolic forms for the genus $g=1$. We reformulate the Fiedler-Helton-Vinnikov formulae for the genus $g=0,1$, and present an elementary computation of the reformulation. Several examples are provided for computing the real symmetric matrices using the reformulation.},
author = {Chien, Mao-Ting, Nakazato, Hiroshi},
journal = {Czechoslovak Mathematical Journal},
keywords = {determinantal representation; hyperbolic form; Riemann theta function; numerical range},
language = {eng},
number = {3},
pages = {633-651},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Computing the determinantal representations of hyperbolic forms},
url = {http://eudml.org/doc/286803},
volume = {66},
year = {2016},
}

TY - JOUR
AU - Chien, Mao-Ting
AU - Nakazato, Hiroshi
TI - Computing the determinantal representations of hyperbolic forms
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 3
SP - 633
EP - 651
AB - The numerical range of an $n\times n$ matrix is determined by an $n$ degree hyperbolic ternary form. Helton-Vinnikov confirmed conversely that an $n$ degree hyperbolic ternary form admits a symmetric determinantal representation. We determine the types of Riemann theta functions appearing in the Helton-Vinnikov formula for the real symmetric determinantal representation of hyperbolic forms for the genus $g=1$. We reformulate the Fiedler-Helton-Vinnikov formulae for the genus $g=0,1$, and present an elementary computation of the reformulation. Several examples are provided for computing the real symmetric matrices using the reformulation.
LA - eng
KW - determinantal representation; hyperbolic form; Riemann theta function; numerical range
UR - http://eudml.org/doc/286803
ER -

References

top
  1. Chien, M. T., Nakazato, H., 10.1080/03081087.2014.947982, Linear Multilinear Algebra 63 (2015), 1501-1519. (2015) Zbl1314.14056MR3304989DOI10.1080/03081087.2014.947982
  2. Chien, M. T., Nakazato, H., 10.15352/bjma/1381782099, Banach J. Math. Anal. 8 (2014), 269-278. (2014) Zbl1283.15025MR3161694DOI10.15352/bjma/1381782099
  3. Chien, M. T., Nakazato, H., Singular points of cyclic weighted shift matrices, Linear Algebra Appl. 439 (2013), 4090-4100. (2013) Zbl1283.15117MR3133478
  4. Chien, M. T., Nakazato, H., Reduction of the c -numerical range to the classical numerical range, Linear Algebra Appl. 434 (2011), 615-624. (2011) Zbl1210.15023MR2746068
  5. Deconinck, B., Heil, M., Bobenko, A., Hoeij, M. van, Schmies, M., 10.1090/S0025-5718-03-01609-0, Math. Comput. 73 (2004), 1417-1442. (2004) MR2047094DOI10.1090/S0025-5718-03-01609-0
  6. Deconinck, B., Hoeji, M. van, Computing Riemann matrices of algebraic curves, Physica D 152-153 (2001), 28-46. (2001) MR1837895
  7. Fiedler, M., Pencils of real symmetric matrices and real algebraic curves, Linear Algebra Appl. 141 (1990), 53-60. (1990) Zbl0709.15009MR1076103
  8. Fiedler, M., 10.1016/0024-3795(81)90169-5, Linear Algebra Appl. 37 (1981), 81-96. (1981) Zbl0452.15024MR0636211DOI10.1016/0024-3795(81)90169-5
  9. Helton, J. W., Spitkovsky, I. M., 10.7153/oam-06-41, Oper. Matrices 6 (2012), 607-611. (2012) Zbl1270.15014MR2987030DOI10.7153/oam-06-41
  10. Helton, J. W., Vinnikov, V., 10.1002/cpa.20155, Commun. Pure Appl. Math. 60 (2007), 654-674. (2007) MR2292953DOI10.1002/cpa.20155
  11. Hurwitz, A., Courant, R., Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen, Grundlehren der mathematischen Wissenschaften. Band 3 Springer, Berlin German (1964). (1964) Zbl0135.12101MR0173749
  12. Kippenhahn, R., 10.1002/mana.19510060306, German Math. Nachr. 6 (1951), 193-228. (1951) Zbl0044.16201MR0059242DOI10.1002/mana.19510060306
  13. Lax, P. D., Differential equations, difference equations and matrix theory, Commun. Pure Appl. Math. 11 (1958), 175-194. (1958) Zbl0086.01603MR0098110
  14. Namba, M., Geometry of Projective Algebraic Curves, Pure and Applied Mathematics 88 Marcel Dekker, New York (1984). (1984) Zbl0556.14012MR0768929
  15. Plaumann, D., Sturmfels, B., Vinzant, C., Computing linear matrix representations of Helton-Vinnikov curves, H. Dym et al. Mathematical Methods in Systems, Optimization, and Control Festschrift in honor of J. William Helton. Operator Theory: Advances and Applications 222 Birkhäuser, Basel 259-277 (2012). (2012) Zbl1328.14093MR2962788
  16. Walker, R. J., Algebraic Curves, Princeton Mathematical Series 13 Princeton University Press, Princeton (1950). (1950) Zbl0039.37701MR0033083
  17. Wang, Z. X., Guo, D. R., Special Functions, World Scientific Publishing, Teaneck (1989). (1989) Zbl0724.33001MR1034956
  18. Wolfram, S., The Mathematica Book, Wolfram Media, Cambridge University Press, Cambridge (1996). (1996) Zbl0878.65001MR1404696

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.