Some results on a doubly truncated generalized discrimination measure
Suchandan Kayal; Rajesh Moharana
Applications of Mathematics (2016)
- Volume: 61, Issue: 5, page 585-605
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topKayal, Suchandan, and Moharana, Rajesh. "Some results on a doubly truncated generalized discrimination measure." Applications of Mathematics 61.5 (2016): 585-605. <http://eudml.org/doc/286811>.
@article{Kayal2016,
abstract = {Doubly truncated data appear in some applications with survival and astrological data. Analogous to the doubly truncated discrimination measure defined by Misagh and Yari (2012), a generalized discrimination measure between two doubly truncated non-negative random variables is proposed. Several bounds are obtained. It is remarked that the proposed measure can never be equal to a nonzero constant which is independent of the left and right truncated points. The effect of monotone transformations on the proposed measure is discussed. Finally, a simulation study is added to provide the estimates of the proposed discrimination measure.},
author = {Kayal, Suchandan, Moharana, Rajesh},
journal = {Applications of Mathematics},
keywords = {doubly truncated random variable; generalized discrimination measure; likelihood ratio order; stochastic order; proportional hazard model; proportional reversed hazard model; monotone transformation; doubly truncated random variable; generalized discrimination measure; likelihood ratio order; stochastic order; proportional hazard model; proportional reversed hazard model; monotone transformation},
language = {eng},
number = {5},
pages = {585-605},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some results on a doubly truncated generalized discrimination measure},
url = {http://eudml.org/doc/286811},
volume = {61},
year = {2016},
}
TY - JOUR
AU - Kayal, Suchandan
AU - Moharana, Rajesh
TI - Some results on a doubly truncated generalized discrimination measure
JO - Applications of Mathematics
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 5
SP - 585
EP - 605
AB - Doubly truncated data appear in some applications with survival and astrological data. Analogous to the doubly truncated discrimination measure defined by Misagh and Yari (2012), a generalized discrimination measure between two doubly truncated non-negative random variables is proposed. Several bounds are obtained. It is remarked that the proposed measure can never be equal to a nonzero constant which is independent of the left and right truncated points. The effect of monotone transformations on the proposed measure is discussed. Finally, a simulation study is added to provide the estimates of the proposed discrimination measure.
LA - eng
KW - doubly truncated random variable; generalized discrimination measure; likelihood ratio order; stochastic order; proportional hazard model; proportional reversed hazard model; monotone transformation; doubly truncated random variable; generalized discrimination measure; likelihood ratio order; stochastic order; proportional hazard model; proportional reversed hazard model; monotone transformation
UR - http://eudml.org/doc/286811
ER -
References
top- Al-Rahman, Q. A., Kittaneh, I., 10.1080/03610926.2012.744051, Commun. Stat., Theory Methods 44 (2015), 1797-1805. (2015) Zbl1357.62301MR3348305DOI10.1080/03610926.2012.744051
- Asadi, M., Ebrahimi, N., Hamedani, G. G., Soofi, E. S., 10.1017/S0021900200000681, J. Appl. Probab. 42 (2005), 643-660. (2005) Zbl1094.94013MR2157511DOI10.1017/S0021900200000681
- Asadi, M., Ebrahimi, N., Soofi, E. S., 10.1016/j.spl.2004.10.033, Stat. Probab. Lett. 71 (2005), 85-98. (2005) Zbl1058.62006MR2125434DOI10.1016/j.spl.2004.10.033
- Betensky, R. A., Martin, E. C., 10.1109/TR.2002.807241, IEEE Trans. Reliab. 52 (2003), 7-8. (2003) DOI10.1109/TR.2002.807241
- Crescenzo, A. Di, Longobardi, M., 10.1016/j.spl.2003.11.019, Stat. Probab. Lett. 67 (2004), 173-182. (2004) Zbl1058.62088MR2051701DOI10.1016/j.spl.2003.11.019
- Ebrahimi, N., Kirmani, S. N. U. A., 10.1093/biomet/83.1.233, Biometrika 83 (1996), 233-235. (1996) Zbl0865.62075MR1399168DOI10.1093/biomet/83.1.233
- Ebrahimi, N., Kirmani, S. N. U. A., 10.1007/BF00054789, Ann. Inst. Stat. Math. 48 (1996), 257-265. (1996) Zbl0861.62063MR1405931DOI10.1007/BF00054789
- Kayal, S., Some results on dynamic discrimination measures of order , Hacet. J. Math. Stat. 44 (2015), 179-188. (2015) Zbl1321.62124MR3363775
- Kullback, S., Leibler, R. A., 10.1214/aoms/1177729694, Ann. Math. Stat. 22 (1951), 79-86. (1951) Zbl0042.38403MR0039968DOI10.1214/aoms/1177729694
- Kundu, C., 10.1007/s00184-014-0510-z, Metrika 78 (2015), 415-435. (2015) Zbl1333.62030MR3325289DOI10.1007/s00184-014-0510-z
- Misagh, F., Yari, G., A novel entropy based measure of uncertainty to lifetime distributions characterizations, Proc. ICMS 10, Ref. No. 100196, Sharjah, UAE, 2010.
- Misagh, F., Yari, G., 10.3390/e14030480, Entropy (electronic only) 14 (2012), 480-490. (2012) Zbl1306.62214MR2908831DOI10.3390/e14030480
- Park, S., 10.1007/s00184-013-0455-7, Metrika 77 (2014), 609-616. (2014) Zbl1335.62087MR3217493DOI10.1007/s00184-013-0455-7
- Park, S., Shin, M., 10.1080/02331888.2013.800070, Statistics 48 (2014), 756-765. (2014) Zbl1326.62013MR3234059DOI10.1080/02331888.2013.800070
- R{é}nyi, A., On measures of entropy and information, Proc. 4th Berkeley Symp. Math. Stat. Probab., Vol. I Univ. California Press, Berkeley, Calif. (1961), 547-561. (1961) Zbl0106.33001MR0132570
- Ruiz, J. M., Navarro, J., 10.1007/BF00050855, Ann. Inst. Stat. Math. 48 (1996), 563-572. (1996) Zbl0925.62059MR1424782DOI10.1007/BF00050855
- Sankaran, P. G., Sunoj, S. M., 10.1007/BF02778272, Stat. Pap. 45 (2004), 97-109. (2004) Zbl1050.62017MR2028057DOI10.1007/BF02778272
- Shaked, M., Shanthikumar, J. G., Stochastic Orders, Springer Series in Statistics Springer, New York (2007). (2007) MR2265633
- Sunoj, S. M., Linu, M. N., On bounds of some dynamic information divergence measures, Statistica 72 (2012), 23-36. (2012)
- Sunoj, S. M., Sankaran, P. G., Maya, S. S., 10.1080/03610920802455001, Commun. Stat., Theory Methods 38 (2009), 1441-1452. (2009) Zbl1165.62009MR2538152DOI10.1080/03610920802455001
- Varma, R. S., Generalizations of Renyi’s entropy of order , J. Math. Sci. 1 (1966), 34-48. (1966) Zbl0166.15401MR0210515
- Wang, C., Chang, H.-H., Boughton, K. A., 10.1007/s11336-010-9186-0, Psychometrika 76 (2011), 13-39. (2011) Zbl1208.62196MR2783870DOI10.1007/s11336-010-9186-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.