is not potentially nilpotent for
Yan Ling Shao; Yubin Gao; Wei Gao
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 3, page 671-679
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topShao, Yan Ling, Gao, Yubin, and Gao, Wei. "$\mathcal {D}_{n,r}$ is not potentially nilpotent for $n \ge 4r-2$." Czechoslovak Mathematical Journal 66.3 (2016): 671-679. <http://eudml.org/doc/286814>.
@article{Shao2016,
abstract = {An $n\times n$ sign pattern $\mathcal \{A\}$ is said to be potentially nilpotent if there exists a nilpotent real matrix $B$ with the same sign pattern as $\mathcal \{A\}$. Let $\mathcal \{D\}_\{n,r\}$ be an $n\times n$ sign pattern with $2\le r \le n$ such that the superdiagonal and the $(n,n)$ entries are positive, the $(i,1)$$(i=1, \dots , r)$ and $(i,i-r+1)$$(i=r+1, \dots , n)$ entries are negative, and zeros elsewhere. We prove that for $r\ge 3$ and $n \ge 4r-2$, the sign pattern $\mathcal \{D\}_\{n,r\}$ is not potentially nilpotent, and so not spectrally arbitrary.},
author = {Shao, Yan Ling, Gao, Yubin, Gao, Wei},
journal = {Czechoslovak Mathematical Journal},
keywords = {sign pattern; potentially nilpotent pattern; spectrally arbitrary pattern},
language = {eng},
number = {3},
pages = {671-679},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$\mathcal \{D\}_\{n,r\}$ is not potentially nilpotent for $n \ge 4r-2$},
url = {http://eudml.org/doc/286814},
volume = {66},
year = {2016},
}
TY - JOUR
AU - Shao, Yan Ling
AU - Gao, Yubin
AU - Gao, Wei
TI - $\mathcal {D}_{n,r}$ is not potentially nilpotent for $n \ge 4r-2$
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 3
SP - 671
EP - 679
AB - An $n\times n$ sign pattern $\mathcal {A}$ is said to be potentially nilpotent if there exists a nilpotent real matrix $B$ with the same sign pattern as $\mathcal {A}$. Let $\mathcal {D}_{n,r}$ be an $n\times n$ sign pattern with $2\le r \le n$ such that the superdiagonal and the $(n,n)$ entries are positive, the $(i,1)$$(i=1, \dots , r)$ and $(i,i-r+1)$$(i=r+1, \dots , n)$ entries are negative, and zeros elsewhere. We prove that for $r\ge 3$ and $n \ge 4r-2$, the sign pattern $\mathcal {D}_{n,r}$ is not potentially nilpotent, and so not spectrally arbitrary.
LA - eng
KW - sign pattern; potentially nilpotent pattern; spectrally arbitrary pattern
UR - http://eudml.org/doc/286814
ER -
References
top- Brualdi, R. A., Ryser, H. J., Combinatorial Matrix Theory, Encyclopedia of Mathematics and Its Applications 39 Cambridge University Press, Cambridge (1991). (1991) Zbl0746.05002MR1130611
- Catral, M., Olesky, D. D., Driessche, P. van den, Allow problems concerning spectral properties of sign pattern matrices: a survey, Linear Algebra Appl. 430 (2009), 3080-3094. (2009) MR2517861
- Cavers, M. S., Meulen, K. N. Vander, Spectrally and inertially arbitrary sign patterns, Linear Algebra Appl. 394 (2005), 53-72. (2005) MR2100576
- Gao, Y., Li, Z., Shao, Y., A note on spectrally arbitrary sign patterns, JP J. Algebra Number Theory Appl. 11 (2008), 15-35. (2008) Zbl1163.15008MR2458665
- Garnett, C., Shader, B. L., A proof of the conjecture: Centralizers, Jacobians and spectrally arbitrary sign patterns, Linear Algebra Appl. 436 (2012), 4451-4458. (2012) Zbl1244.15020MR2917422
- Horn, R. A., Johnson, C. R., Matrix Analysis, Cambridge University Press, Cambridge (1985). (1985) Zbl0576.15001MR0832183
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.