The real symmetric matrices of odd order with a P-set of maximum size
Zhibin Du; Carlos Martins da Fonseca
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 3, page 1007-1026
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topDu, Zhibin, and da Fonseca, Carlos Martins. "The real symmetric matrices of odd order with a P-set of maximum size." Czechoslovak Mathematical Journal 66.3 (2016): 1007-1026. <http://eudml.org/doc/286817>.
@article{Du2016,
abstract = {Suppose that $A$ is a real symmetric matrix of order $n$. Denote by $m_A(0)$ the nullity of $A$. For a nonempty subset $\alpha $ of $\lbrace 1,2,\ldots ,n\rbrace $, let $A(\alpha )$ be the principal submatrix of $A$ obtained from $A$ by deleting the rows and columns indexed by $\alpha $. When $m_\{A(\alpha )\}(0)=m_\{A\}(0)+|\alpha |$, we call $\alpha $ a P-set of $A$. It is known that every P-set of $A$ contains at most $\lfloor \{n\}/\{2\} \rfloor $ elements. The graphs of even order for which one can find a matrix attaining this bound are now completely characterized. However, the odd case turned out to be more difficult to tackle. As a first step to the full characterization of these graphs of odd order, we establish some conditions for such graphs $G$ under which there is a real symmetric matrix $A$ whose graph is $G$ and contains a P-set of size $\{(n-1)\}/\{2\}$.},
author = {Du, Zhibin, da Fonseca, Carlos Martins},
journal = {Czechoslovak Mathematical Journal},
keywords = {real symmetric matrix; graph; multiplicity of eigenvalues; P-set; P-vertices},
language = {eng},
number = {3},
pages = {1007-1026},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The real symmetric matrices of odd order with a P-set of maximum size},
url = {http://eudml.org/doc/286817},
volume = {66},
year = {2016},
}
TY - JOUR
AU - Du, Zhibin
AU - da Fonseca, Carlos Martins
TI - The real symmetric matrices of odd order with a P-set of maximum size
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 3
SP - 1007
EP - 1026
AB - Suppose that $A$ is a real symmetric matrix of order $n$. Denote by $m_A(0)$ the nullity of $A$. For a nonempty subset $\alpha $ of $\lbrace 1,2,\ldots ,n\rbrace $, let $A(\alpha )$ be the principal submatrix of $A$ obtained from $A$ by deleting the rows and columns indexed by $\alpha $. When $m_{A(\alpha )}(0)=m_{A}(0)+|\alpha |$, we call $\alpha $ a P-set of $A$. It is known that every P-set of $A$ contains at most $\lfloor {n}/{2} \rfloor $ elements. The graphs of even order for which one can find a matrix attaining this bound are now completely characterized. However, the odd case turned out to be more difficult to tackle. As a first step to the full characterization of these graphs of odd order, we establish some conditions for such graphs $G$ under which there is a real symmetric matrix $A$ whose graph is $G$ and contains a P-set of size ${(n-1)}/{2}$.
LA - eng
KW - real symmetric matrix; graph; multiplicity of eigenvalues; P-set; P-vertices
UR - http://eudml.org/doc/286817
ER -
References
top- Anđelić, M., Erić, A., Fonseca, C. M. da, 10.1080/03081087.2013.794619, Linear Multilinear Algebra 61 (2013), 49-57; erratum ibid. 61 (2013), 1159-1160. (2013) Zbl1315.15006MR3003041DOI10.1080/03081087.2013.794619
- Anđelić, M., Fonseca, C. M. da, Mamede, R., 10.1016/j.laa.2010.09.017, Linear Algebra Appl. 434 (2011), 514-525. (2011) Zbl1225.05078MR2741238DOI10.1016/j.laa.2010.09.017
- Cvetković, D., Rowlinson, P., Simić, S., 10.1016/0024-3795(93)90491-6, Linear Algebra Appl. 182 (1993), 45-66. (1993) Zbl0778.05057MR1207074DOI10.1016/0024-3795(93)90491-6
- Du, Z., The real symmetric matrices with a P-set of maximum size and their associated graphs, J. South China Norm. Univ., Nat. Sci. Ed. 48 (2016), 119-122. (2016) Zbl1363.05159MR3469083
- Du, Z., Fonseca, C. M. da, The singular acyclic matrices of even order with a P-set of maximum size, (to appear) in Filomat.
- Du, Z., Fonseca, C. M. da, The acyclic matrices with a P-set of maximum size, Linear Algebra Appl. 468 (2015), 27-37. (2015) Zbl1307.15012MR3293238
- Du, Z., Fonseca, C. M. da, 10.1080/03081087.2014.975225, Linear Multilinear Algebra 63 (2015), 2103-2120. (2015) Zbl1334.15026MR3378019DOI10.1080/03081087.2014.975225
- Du, Z., Fonseca, C. M. da, Nonsingular acyclic matrices with an extremal number of P-vertices, Linear Algebra Appl. 442 (2014), 2-19. (2014) Zbl1282.15028MR3134347
- Du, Z., Fonseca, C. M. da, The singular acyclic matrices with maximal number of P-vertices, Linear Algebra Appl. 438 (2013), 2274-2279. (2013) Zbl1258.05024MR3005289
- Erić, A., Fonseca, C. M. da, 10.1016/j.disc.2013.05.018, Discrete Math. 313 (2013), 2192-2194. (2013) Zbl1281.05091MR3084262DOI10.1016/j.disc.2013.05.018
- Fernandes, R., Cruz, H. F. da, Sets of Parter vertices which are Parter sets, Linear Algebra Appl. 448 (2014), 37-54. (2014) Zbl1286.15008MR3182972
- Horn, R. A., Johnson, C. R., Matrix Analysis, Cambridge University Press, Cambridge (2013). (2013) Zbl1267.15001MR2978290
- Johnson, C. R., Duarte, A. Leal, Saiago, C. M., 10.1137/S0895479801393320, SIAM J. Matrix Anal. Appl. 25 (2003), 352-361. (2003) MR2047422DOI10.1137/S0895479801393320
- Johnson, C. R., Sutton, B. D., 10.1137/S0895479802413649, SIAM J. Matrix Anal. Appl. 26 (2004), 390-399. (2004) Zbl1083.15015MR2124154DOI10.1137/S0895479802413649
- Kim, I.-J., Shader, B. L., 10.1080/03081080701823286, Linear Multilinear Algebra 57 (2009), 399-407. (2009) Zbl1168.15021MR2522851DOI10.1080/03081080701823286
- Kim, I.-J., Shader, B. L., 10.1016/j.laa.2007.12.022, Linear Algebra Appl. 428 (2008), 2601-2613. (2008) Zbl1145.15011MR2416575DOI10.1016/j.laa.2007.12.022
- Nelson, C., Shader, B., All pairs suffice for a P-set, Linear Algebra Appl. 475 (2015), 114-118. (2015) Zbl1312.15012MR3325221
- Nelson, C., Shader, B., Maximal P-sets of matrices whose graph is a tree, Linear Algebra Appl. 485 (2015), 485-502. (2015) Zbl1322.05092MR3394160
- Sciriha, I., A characterization of singular graphs, Electron. J. Linear Algebra (electronic only) 16 (2007), 451-462. (2007) Zbl1142.05344MR2365899
- Sciriha, I., 10.1016/S0012-365X(97)00036-8, Discrete Math. 181 (1998), 193-211. (1998) Zbl0901.05069MR1600771DOI10.1016/S0012-365X(97)00036-8
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.