Gaussian density estimates for the solution of singular stochastic Riccati equations
Applications of Mathematics (2016)
- Volume: 61, Issue: 5, page 515-526
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topNguyen, Tien Dung. "Gaussian density estimates for the solution of singular stochastic Riccati equations." Applications of Mathematics 61.5 (2016): 515-526. <http://eudml.org/doc/286819>.
@article{Nguyen2016,
abstract = {Stochastic Riccati equation is a backward stochastic differential equation with singular generator which arises naturally in the study of stochastic linear-quadratic optimal control problems. In this paper, we obtain Gaussian density estimates for the solutions to this equation.},
author = {Nguyen, Tien Dung},
journal = {Applications of Mathematics},
keywords = {stochastic Riccati equation; Malliavin calculus; density estimate; stochastic Riccati equation; Malliavin calculus; density estimate},
language = {eng},
number = {5},
pages = {515-526},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Gaussian density estimates for the solution of singular stochastic Riccati equations},
url = {http://eudml.org/doc/286819},
volume = {61},
year = {2016},
}
TY - JOUR
AU - Nguyen, Tien Dung
TI - Gaussian density estimates for the solution of singular stochastic Riccati equations
JO - Applications of Mathematics
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 5
SP - 515
EP - 526
AB - Stochastic Riccati equation is a backward stochastic differential equation with singular generator which arises naturally in the study of stochastic linear-quadratic optimal control problems. In this paper, we obtain Gaussian density estimates for the solutions to this equation.
LA - eng
KW - stochastic Riccati equation; Malliavin calculus; density estimate; stochastic Riccati equation; Malliavin calculus; density estimate
UR - http://eudml.org/doc/286819
ER -
References
top- Aboura, O., Bourguin, S., 10.1007/s11118-012-9287-8, Potential Anal. 38 (2013), 573-587. (2013) Zbl1273.60066MR3015365DOI10.1007/s11118-012-9287-8
- Antonelli, F., Kohatsu-Higa, A., 10.1007/s11118-004-1324-9, Potential Anal. 22 (2005), 263-287. (2005) Zbl1082.60047MR2134722DOI10.1007/s11118-004-1324-9
- Cvitani{ć}, J., Zhang, J., Contract Theory in Continuous-Time Models, Springer Finance Springer, Heidelberg (2013). (2013) Zbl1319.91007MR2963805
- Reis, G. Dos, On Some Properties of Solutions of Quadratic Growth BSDE and Applications in Finance and Insurance, PhD thesis, Humboldt University in Berlin (2010). (2010)
- Kazamaki, N., Continuous Exponential Martingales and BMO, Lecture Notes in Mathematics 1579 Springer, Berlin (1994). (1994) Zbl0806.60033MR1299529
- Lim, A. E. B., Zhou, X. Y., 10.1287/moor.27.1.101.337, Math. Oper. Res. 27 (2002), 101-120. (2002) Zbl1082.91521MR1886222DOI10.1287/moor.27.1.101.337
- Mastrolia, T., Possamaï, D., Réveillac, A., 10.1214/15-AOP1035, Ann. Probab. 44 (2016), 2817-2857. (2016) MR3531681DOI10.1214/15-AOP1035
- Nguyen, T. D., Privault, N., Torrisi, G. L., 10.1007/s11118-015-9472-7, Potential Anal. 43 (2015), 289-311. (2015) Zbl1321.60127MR3374113DOI10.1007/s11118-015-9472-7
- Nourdin, I., Viens, F. G., 10.1214/EJP.v14-707, Electron. J. Probab. 14 (2009), 2287-2309. (2009) Zbl1192.60066MR2556018DOI10.1214/EJP.v14-707
- Nualart, D., The Malliavin Calculus and Related Topics, Probability and Its Applications Springer, Berlin (2006). (2006) Zbl1099.60003MR2200233
- Privault, N., Stochastic Analysis in Discrete and Continuous Settings with Normal Martingales, Lecture Notes in Mathematics 1982 Springer, Berlin (2009). (2009) Zbl1185.60005MR2531026
- Shen, Y., 10.1016/j.automatica.2015.03.009, Automatica J. IFAC 55 (2015), 165-175. (2015) MR3336665DOI10.1016/j.automatica.2015.03.009
- Yu, Z., 10.1007/s00245-013-9209-1, Appl. Math. Optim. 68 (2013), 333-359. (2013) Zbl1288.91181MR3131499DOI10.1007/s00245-013-9209-1
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.