Coalescing Fiedler and core vertices
Didar A. Ali; John Baptist Gauci; Irene Sciriha; Khidir R. Sharaf
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 3, page 971-985
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAli, Didar A., et al. "Coalescing Fiedler and core vertices." Czechoslovak Mathematical Journal 66.3 (2016): 971-985. <http://eudml.org/doc/286823>.
@article{Ali2016,
abstract = {The nullity of a graph $G$ is the multiplicity of zero as an eigenvalue in the spectrum of its adjacency matrix. From the interlacing theorem, derived from Cauchy’s inequalities for matrices, a vertex of a graph can be a core vertex if, on deleting the vertex, the nullity decreases, or a Fiedler vertex, otherwise. We adopt a graph theoretical approach to determine conditions required for the identification of a pair of prescribed types of root vertices of two graphs to form a cut-vertex of unique type in the coalescence. Moreover, the nullity of subgraphs obtained by perturbations of the coalescence $G$ is determined relative to the nullity of $G$. This has direct applications in spectral graph theory as well as in the construction of certain ipso-connected nano-molecular insulators.},
author = {Ali, Didar A., Gauci, John Baptist, Sciriha, Irene, Sharaf, Khidir R.},
journal = {Czechoslovak Mathematical Journal},
keywords = {nullity; core vertex; Fiedler vertex; cut-vertices; coalescence},
language = {eng},
number = {3},
pages = {971-985},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Coalescing Fiedler and core vertices},
url = {http://eudml.org/doc/286823},
volume = {66},
year = {2016},
}
TY - JOUR
AU - Ali, Didar A.
AU - Gauci, John Baptist
AU - Sciriha, Irene
AU - Sharaf, Khidir R.
TI - Coalescing Fiedler and core vertices
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 3
SP - 971
EP - 985
AB - The nullity of a graph $G$ is the multiplicity of zero as an eigenvalue in the spectrum of its adjacency matrix. From the interlacing theorem, derived from Cauchy’s inequalities for matrices, a vertex of a graph can be a core vertex if, on deleting the vertex, the nullity decreases, or a Fiedler vertex, otherwise. We adopt a graph theoretical approach to determine conditions required for the identification of a pair of prescribed types of root vertices of two graphs to form a cut-vertex of unique type in the coalescence. Moreover, the nullity of subgraphs obtained by perturbations of the coalescence $G$ is determined relative to the nullity of $G$. This has direct applications in spectral graph theory as well as in the construction of certain ipso-connected nano-molecular insulators.
LA - eng
KW - nullity; core vertex; Fiedler vertex; cut-vertices; coalescence
UR - http://eudml.org/doc/286823
ER -
References
top- Andelić, M., Fonseca, C. M. Da, Mamede, R., 10.1016/j.laa.2010.09.017, Linear Algebra Appl. 434 (2011), 514-525. (2011) Zbl1225.05078MR2741238DOI10.1016/j.laa.2010.09.017
- Brown, M., Kennedy, J. W., Servatius, B., Graph singularity, Graph Theory Notes N. Y. 25 (1993), 23-32. (1993)
- Collatz, L., Sinogowitz, U., 10.1007/BF02941924, Abh. Math. Semin. Univ. Hamb. 21 (1957), 63-77 German. (1957) Zbl0077.36704MR0087952DOI10.1007/BF02941924
- Cvetković, D., Doob, M., 10.1080/03081088508817683, Linear Multilinear Algebra 18 (1985), 153-181. (1985) Zbl0615.05039MR0817659DOI10.1080/03081088508817683
- Fowler, P. W., Pickup, B. T., Todorova, T. Z., Borg, M., Sciriha, I., 10.1063/1.4863559, J. Chem. Phys. 140 (2014), no. 054115, 12 pages. (2014) DOI10.1063/1.4863559
- Fowler, P. W., Pickup, B. T., Todorova, T. Z., Reyes, R. De Los, Sciriha, I., 10.1016/j.cplett.2013.03.022, Chem. Phys. Lett. 568/569 (2013), 33-35. (2013) DOI10.1016/j.cplett.2013.03.022
- Gong, S. C., Xu, G. H., On the nullity of a graph with cut-points, Linear Algebra Appl. 436 (2012), 135-142. (2012) Zbl1243.05147MR2859917
- Gutman, I., Sciriha, I., Spectral properties of windmills, Graph Theory Notes N. Y. 38 (2000), 20-24. (2000) MR1751021
- Gutman, I., Sciriha, I., Graphs with maximum singularity, Graph Theory Notes N. Y. 30 (1996), 17-20. (1996) MR1661917
- Hückel, E., 10.1007/BF01339530, Z. Phys. German 70 (1931), 204-286. (1931) Zbl0002.09601DOI10.1007/BF01339530
- Johnson, C. R., Sutton, B. D., 10.1137/S0895479802413649, SIAM J. Matrix Anal. Appl. 26 (2004), 390-399. (2004) Zbl1083.15015MR2124154DOI10.1137/S0895479802413649
- Kim, I.-J., Shader, B. L., 10.1016/j.laa.2007.12.022, Linear Algebra Appl. 428 (2008), 2601-2613. (2008) Zbl1145.15011MR2416575DOI10.1016/j.laa.2007.12.022
- Marcus, M., Minc, H., A Survey of Matrix Theory and Matrix Inequalities, Allyn and Bacon, Boston (1964). (1964) Zbl0126.02404MR0162808
- Pickup, B. T., Fowler, P. W., Borg, M., Sciriha, I., 10.1063/1.4935716, J. Chem. Phys. 143 (2015), #194105, 20 pages. (2015) DOI10.1063/1.4935716
- Schwenk, A. J., 10.1007/BFb0066438, Graphs and Combin., Proc. Capital Conf., Washington, Lect. Notes Math. 406 R. A. Bari, F. Harary Springer, Berlin (1974), 153-172. (1974) Zbl0308.05121MR0387126DOI10.1007/BFb0066438
- Sciriha, I., 10.26493/1855-3974.115.891, Ars Math. Contemp. 2 (2009), 217-229. (2009) Zbl1190.05084MR2565361DOI10.26493/1855-3974.115.891
- Sciriha, I., 10.26493/1855-3974.20.7cc, Ars Math. Contemp. 1 (2008), 20-31. (2008) Zbl1168.05330MR2434268DOI10.26493/1855-3974.20.7cc
- Sciriha, I., 10.13001/1081-3810.1215, Electron. J. Linear Algebra 16 (2007), 451-462. (2007) Zbl1142.05344MR2365899DOI10.13001/1081-3810.1215
- Sciriha, I., 10.1016/S0012-365X(97)00036-8, Discrete Math. 181 (1998), 193-211. (1998) Zbl0901.05069MR1600771DOI10.1016/S0012-365X(97)00036-8
- Sciriha, I., The characteristic polynomials of windmills with an application to the line graphs of trees, Graph Theory Notes N. Y. 35 (1998), 16-21. (1998) MR1667874
- Sciriha, I., Debono, M., Borg, M., Fowler, P. W., Pickup, B. T., 10.26493/1855-3974.275.574, Ars Math. Contemp. 6 (2013), 261-278. (2013) Zbl1290.05106MR2996933DOI10.26493/1855-3974.275.574
- Sharaf, K. R., Ali, D. A., Nullity and bounds to the nullity of dendrimer graphs, Raf. J. of Comp. & Math's 10 (2013), 71-86. (2013)
- Simić, S. K., Andelić, M., Fonseca, C. M. Da, Živković, D., On the multiplicities of eigenvalues of graphs and their vertex deleted subgraphs: old and new results, Electron. J. Linear Algebra (electronic only) 30 (2015), 85-105. (2015) Zbl1323.05083MR3335833
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.