Some remarks on the interpolation spaces A θ , A θ

Mohammad Daher

Commentationes Mathematicae Universitatis Carolinae (2016)

  • Volume: 57, Issue: 3, page 301-315
  • ISSN: 0010-2628

Abstract

top
Let ( A 0 , A 1 ) be a regular interpolation couple. Under several different assumptions on a fixed A β , we show that A θ = A θ for every θ ( 0 , 1 ) . We also deal with assumptions on A ¯ β , the closure of A β in the dual of ( A 0 * , A 1 * ) β .

How to cite

top

Daher, Mohammad. "Some remarks on the interpolation spaces $A^\theta , A_\theta $." Commentationes Mathematicae Universitatis Carolinae 57.3 (2016): 301-315. <http://eudml.org/doc/286825>.

@article{Daher2016,
abstract = {Let $(A_0, A_1)$ be a regular interpolation couple. Under several different assumptions on a fixed $A^\{\beta \}$, we show that $A^\{\theta \} = A_\{\theta \}$ for every $\theta \in (0, 1)$. We also deal with assumptions on $\overline\{A\}^\{\beta \}$, the closure of $A^\{\beta \}$ in the dual of $(A_0^*, A_1^*)_\beta $.},
author = {Daher, Mohammad},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {interpolation},
language = {eng},
number = {3},
pages = {301-315},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Some remarks on the interpolation spaces $A^\theta , A_\theta $},
url = {http://eudml.org/doc/286825},
volume = {57},
year = {2016},
}

TY - JOUR
AU - Daher, Mohammad
TI - Some remarks on the interpolation spaces $A^\theta , A_\theta $
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2016
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 57
IS - 3
SP - 301
EP - 315
AB - Let $(A_0, A_1)$ be a regular interpolation couple. Under several different assumptions on a fixed $A^{\beta }$, we show that $A^{\theta } = A_{\theta }$ for every $\theta \in (0, 1)$. We also deal with assumptions on $\overline{A}^{\beta }$, the closure of $A^{\beta }$ in the dual of $(A_0^*, A_1^*)_\beta $.
LA - eng
KW - interpolation
UR - http://eudml.org/doc/286825
ER -

References

top
  1. Arveson W., An Invitation to C * -algebra, Graduate Texts in Math., 39, Springer, New York-Heidelberg, 1976. MR0512360
  2. Bergh J., Lofström J., Interpolation Spaces. An Introduction, Springer, Berlin-Heidelberg-New York, 1976. Zbl0344.46071MR0482275
  3. Bergh J., 10.1512/iumj.1979.28.28054, Indiana Univ. Math. J. 28 (1979), 775–777. Zbl0394.41004MR0542336DOI10.1512/iumj.1979.28.28054
  4. Daher M., Une remarque sur l’espace A θ , C.R.Acad. Sci. Paris Ser. I Math. 322 (1996), no. 7, 641–644. MR1386467
  5. Daher M., 10.4064/cm123-2-3, Colloq. Math. 123 (2011), no. 2, 197–204. MR2811171DOI10.4064/cm123-2-3
  6. Daher M., Une remarque sur les espaces d'interpolation faiblement localement uniformément convexes, arXiv:1206.4848. 
  7. Diestel J., Uhl J.J., Vector Measures, Mathematical Surveys, 15, American Mathematical Society, Providence, Rhode Island, 1977. Zbl0521.46035MR0453964
  8. Edgar G.A., 10.1512/iumj.1977.26.26053, Indiana Univ. Math. J. 26 (1977), no. 4, 663–677. Zbl0418.46034MR0487448DOI10.1512/iumj.1977.26.26053
  9. Fabian M., Habala P., Hajek P., Montesinos V., Zizler V., Banach Space Theory, CMS Books in Mathematics, Springer, New York, 2011. Zbl1321.00042MR2766381
  10. Rosenthal H.P., 10.2307/2373824, Amer. J. Math. 99 (1977), no. 2, 362–378. MR0438113DOI10.2307/2373824

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.