A treatment of a determinant inequality of Fiedler and Markham
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 3, page 737-742
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLin, Minghua. "A treatment of a determinant inequality of Fiedler and Markham." Czechoslovak Mathematical Journal 66.3 (2016): 737-742. <http://eudml.org/doc/286831>.
@article{Lin2016,
abstract = {Fiedler and Markham (1994) proved \[ \Big (\frac\{\mathop \{\rm det \} \widehat\{H\}\}\{k\}\Big )^\{ k\}\ge \mathop \{\rm det \} H, \]
where $H=(H_\{ij\})_\{i,j=1\}^n$ is a positive semidefinite matrix partitioned into $n\times n$ blocks with each block $k\times k$ and $\widehat\{H\}=(\mathop \{\rm tr\} H_\{ij\})_\{i,j=1\}^n$. We revisit this inequality mainly using some terminology from quantum information theory. Analogous results are included. For example, under the same condition, we prove \[ \mathop \{\rm det \}(I\_n+\widehat\{H\}) \ge \mathop \{\rm det \}(I\_\{nk\}+kH)^\{\{1\}/\{k\}\}.\]},
author = {Lin, Minghua},
journal = {Czechoslovak Mathematical Journal},
keywords = {determinant inequality; partial trace},
language = {eng},
number = {3},
pages = {737-742},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A treatment of a determinant inequality of Fiedler and Markham},
url = {http://eudml.org/doc/286831},
volume = {66},
year = {2016},
}
TY - JOUR
AU - Lin, Minghua
TI - A treatment of a determinant inequality of Fiedler and Markham
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 3
SP - 737
EP - 742
AB - Fiedler and Markham (1994) proved \[ \Big (\frac{\mathop {\rm det } \widehat{H}}{k}\Big )^{ k}\ge \mathop {\rm det } H, \]
where $H=(H_{ij})_{i,j=1}^n$ is a positive semidefinite matrix partitioned into $n\times n$ blocks with each block $k\times k$ and $\widehat{H}=(\mathop {\rm tr} H_{ij})_{i,j=1}^n$. We revisit this inequality mainly using some terminology from quantum information theory. Analogous results are included. For example, under the same condition, we prove \[ \mathop {\rm det }(I_n+\widehat{H}) \ge \mathop {\rm det }(I_{nk}+kH)^{{1}/{k}}.\]
LA - eng
KW - determinant inequality; partial trace
UR - http://eudml.org/doc/286831
ER -
References
top- Bhatia, R., Positive Definite Matrices, Texts and Readings in Mathematics 44. New Delhi: Hindustan Book Agency, Princeton Series in Applied Mathematics Princeton University Press, Princeton (2007). (2007) Zbl1125.15300MR2284176
- Bourin, J.-C., Lee, E.-Y., Lin, M., Positive matrices partitioned into a small number of Hermitian blocks, Linear Algebra Appl. 438 (2013), 2591-2598. (2013) Zbl1262.15037MR3005316
- Pillis, J. de, 10.1215/S0012-7094-69-03661-8, Duke Math. J. 36 (1969), 511-515. (1969) Zbl0186.33703MR0325649DOI10.1215/S0012-7094-69-03661-8
- Fiedler, M., Markham, T. L., On a theorem of Everitt, Thompson, and de Pillis, Math. Slovaca 44 (1994), 441-444. (1994) Zbl0828.15023MR1301952
- Hiroshima, T., 10.1103/PhysRevLett.91.057902, Phys. Rev. Lett. 91 (2003), no. 057902, 4 pages. http://dx.doi.org/10.1103/PhysRevLett.91.057902. (2003) DOI10.1103/PhysRevLett.91.057902
- Horn, R. A., Johnson, C. R., Matrix Analysis, Cambridge University Press, Cambridge (2013). (2013) Zbl1267.15001MR2978290
- Horodecki, M., Horodecki, P., Horodecki, R., 10.1016/S0375-9601(96)00706-2, Phys. Lett. A 223 (1996), 1-8. (1996) Zbl1037.81501MR1421501DOI10.1016/S0375-9601(96)00706-2
- Jenčová, A., Ruskai, M. B., 10.1142/S0129055X10004144, Rev. Math. Phys. 22 (2010), 1099-1121. (2010) Zbl1218.81025MR2733251DOI10.1142/S0129055X10004144
- Lin, M., Some applications of a majorization inequality due to Bapat and Sunder, Linear Algebra Appl. 469 (2015), 510-517. (2015) Zbl1310.15033MR3299075
- Petz, D., Quantum Information Theory and Quantum Statistics, Theoretical and Mathematical Physics Springer, Berlin (2008). (2008) Zbl1145.81002MR2363070
- Rastegin, A. E., 10.1007/s10955-012-0569-8, J. Stat. Phys. 148 (2012), 1040-1053. (2012) MR2975521DOI10.1007/s10955-012-0569-8
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.