A treatment of a determinant inequality of Fiedler and Markham

Minghua Lin

Czechoslovak Mathematical Journal (2016)

  • Volume: 66, Issue: 3, page 737-742
  • ISSN: 0011-4642

Abstract

top
Fiedler and Markham (1994) proved det H ^ k k det H , where H = ( H i j ) i , j = 1 n is a positive semidefinite matrix partitioned into n × n blocks with each block k × k and H ^ = ( tr H i j ) i , j = 1 n . We revisit this inequality mainly using some terminology from quantum information theory. Analogous results are included. For example, under the same condition, we prove det ( I n + H ^ ) det ( I n k + k H ) 1 / k .

How to cite

top

Lin, Minghua. "A treatment of a determinant inequality of Fiedler and Markham." Czechoslovak Mathematical Journal 66.3 (2016): 737-742. <http://eudml.org/doc/286831>.

@article{Lin2016,
abstract = {Fiedler and Markham (1994) proved \[ \Big (\frac\{\mathop \{\rm det \} \widehat\{H\}\}\{k\}\Big )^\{ k\}\ge \mathop \{\rm det \} H, \] where $H=(H_\{ij\})_\{i,j=1\}^n$ is a positive semidefinite matrix partitioned into $n\times n$ blocks with each block $k\times k$ and $\widehat\{H\}=(\mathop \{\rm tr\} H_\{ij\})_\{i,j=1\}^n$. We revisit this inequality mainly using some terminology from quantum information theory. Analogous results are included. For example, under the same condition, we prove \[ \mathop \{\rm det \}(I\_n+\widehat\{H\}) \ge \mathop \{\rm det \}(I\_\{nk\}+kH)^\{\{1\}/\{k\}\}.\]},
author = {Lin, Minghua},
journal = {Czechoslovak Mathematical Journal},
keywords = {determinant inequality; partial trace},
language = {eng},
number = {3},
pages = {737-742},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A treatment of a determinant inequality of Fiedler and Markham},
url = {http://eudml.org/doc/286831},
volume = {66},
year = {2016},
}

TY - JOUR
AU - Lin, Minghua
TI - A treatment of a determinant inequality of Fiedler and Markham
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 3
SP - 737
EP - 742
AB - Fiedler and Markham (1994) proved \[ \Big (\frac{\mathop {\rm det } \widehat{H}}{k}\Big )^{ k}\ge \mathop {\rm det } H, \] where $H=(H_{ij})_{i,j=1}^n$ is a positive semidefinite matrix partitioned into $n\times n$ blocks with each block $k\times k$ and $\widehat{H}=(\mathop {\rm tr} H_{ij})_{i,j=1}^n$. We revisit this inequality mainly using some terminology from quantum information theory. Analogous results are included. For example, under the same condition, we prove \[ \mathop {\rm det }(I_n+\widehat{H}) \ge \mathop {\rm det }(I_{nk}+kH)^{{1}/{k}}.\]
LA - eng
KW - determinant inequality; partial trace
UR - http://eudml.org/doc/286831
ER -

References

top
  1. Bhatia, R., Positive Definite Matrices, Texts and Readings in Mathematics 44. New Delhi: Hindustan Book Agency, Princeton Series in Applied Mathematics Princeton University Press, Princeton (2007). (2007) Zbl1125.15300MR2284176
  2. Bourin, J.-C., Lee, E.-Y., Lin, M., Positive matrices partitioned into a small number of Hermitian blocks, Linear Algebra Appl. 438 (2013), 2591-2598. (2013) Zbl1262.15037MR3005316
  3. Pillis, J. de, 10.1215/S0012-7094-69-03661-8, Duke Math. J. 36 (1969), 511-515. (1969) Zbl0186.33703MR0325649DOI10.1215/S0012-7094-69-03661-8
  4. Fiedler, M., Markham, T. L., On a theorem of Everitt, Thompson, and de Pillis, Math. Slovaca 44 (1994), 441-444. (1994) Zbl0828.15023MR1301952
  5. Hiroshima, T., 10.1103/PhysRevLett.91.057902, Phys. Rev. Lett. 91 (2003), no. 057902, 4 pages. http://dx.doi.org/10.1103/PhysRevLett.91.057902. (2003) DOI10.1103/PhysRevLett.91.057902
  6. Horn, R. A., Johnson, C. R., Matrix Analysis, Cambridge University Press, Cambridge (2013). (2013) Zbl1267.15001MR2978290
  7. Horodecki, M., Horodecki, P., Horodecki, R., 10.1016/S0375-9601(96)00706-2, Phys. Lett. A 223 (1996), 1-8. (1996) Zbl1037.81501MR1421501DOI10.1016/S0375-9601(96)00706-2
  8. Jenčová, A., Ruskai, M. B., 10.1142/S0129055X10004144, Rev. Math. Phys. 22 (2010), 1099-1121. (2010) Zbl1218.81025MR2733251DOI10.1142/S0129055X10004144
  9. Lin, M., Some applications of a majorization inequality due to Bapat and Sunder, Linear Algebra Appl. 469 (2015), 510-517. (2015) Zbl1310.15033MR3299075
  10. Petz, D., Quantum Information Theory and Quantum Statistics, Theoretical and Mathematical Physics Springer, Berlin (2008). (2008) Zbl1145.81002MR2363070
  11. Rastegin, A. E., 10.1007/s10955-012-0569-8, J. Stat. Phys. 148 (2012), 1040-1053. (2012) MR2975521DOI10.1007/s10955-012-0569-8

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.