General proportional mean residual life model
Mohamed Kayid; Salman Izadkhah; Dalal ALmufarrej
Applications of Mathematics (2016)
- Volume: 61, Issue: 5, page 607-622
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topKayid, Mohamed, Izadkhah, Salman, and ALmufarrej, Dalal. "General proportional mean residual life model." Applications of Mathematics 61.5 (2016): 607-622. <http://eudml.org/doc/286834>.
@article{Kayid2016,
abstract = {By considering a covariate random variable in the ordinary proportional mean residual life (PMRL) model, we introduce and study a general model, taking more situations into account with respect to the ordinary PMRL model. We investigate how stochastic structures of the proposed model are affected by the stochastic properties of the baseline and the mixing variables in the model. Several characterizations and preservation properties of the new model under different stochastic orders and aging classes are provided. In addition, to illustrate different properties of the model, some examples are presented.},
author = {Kayid, Mohamed, Izadkhah, Salman, ALmufarrej, Dalal},
journal = {Applications of Mathematics},
keywords = {stochastic order; preservation property; decreasing failure rate (DFR); increasing mean residual life (IMRL); stochastic order; preservation property; decreasing failure rate (DFR); increasing mean residual life (IMRL)},
language = {eng},
number = {5},
pages = {607-622},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {General proportional mean residual life model},
url = {http://eudml.org/doc/286834},
volume = {61},
year = {2016},
}
TY - JOUR
AU - Kayid, Mohamed
AU - Izadkhah, Salman
AU - ALmufarrej, Dalal
TI - General proportional mean residual life model
JO - Applications of Mathematics
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 5
SP - 607
EP - 622
AB - By considering a covariate random variable in the ordinary proportional mean residual life (PMRL) model, we introduce and study a general model, taking more situations into account with respect to the ordinary PMRL model. We investigate how stochastic structures of the proposed model are affected by the stochastic properties of the baseline and the mixing variables in the model. Several characterizations and preservation properties of the new model under different stochastic orders and aging classes are provided. In addition, to illustrate different properties of the model, some examples are presented.
LA - eng
KW - stochastic order; preservation property; decreasing failure rate (DFR); increasing mean residual life (IMRL); stochastic order; preservation property; decreasing failure rate (DFR); increasing mean residual life (IMRL)
UR - http://eudml.org/doc/286834
ER -
References
top- Barlow, R. E., Proschan, F., Statistical Theory of Reliability and Life Testing, International Series in Decision Processes. Holt, Rinehart and Winston, New York (1975). (1975) Zbl0379.62080MR0438625
- Behboodian, J., 10.1080/0020739940250503, Int. J. Math. Educ. Sci. Technol. 25 (1994), 643-647. (1994) Zbl0822.60015MR1295325DOI10.1080/0020739940250503
- Chen, Y. Q., Cheng, S., Semiparametric regression analysis of mean residual life with censored survival data, Biometrika 92 (2005), 19-29. (2005) Zbl1068.62044MR2158607
- Chen, Y. Q., Jewell, N. P., Lei, X., Cheng, S. C., 10.1111/j.0006-341X.2005.030224.x, Biometrics 61 (2005), 170-178. (2005) Zbl1077.62079MR2135857DOI10.1111/j.0006-341X.2005.030224.x
- Gupta, R. C., 10.1017/S0269964815000388, Probab. Eng. Inf. Sci. 30 (2016), 281-297. (2016) Zbl1373.62496MR3478846DOI10.1017/S0269964815000388
- Gupta, R. C., Kirmani, S. N. U. A., 10.1080/02331889808802660, Statistics 32 (1998), 175-187. (1998) Zbl0916.62064MR1708121DOI10.1080/02331889808802660
- Karlin, S., Total Positivity. Vol. I, Stanford University Press, Stanford (1968). (1968) MR0230102
- Kayid, M., Izadkhah, S., 10.1016/j.orl.2015.01.011, Oper. Res. Lett. 43 (2015), 183-188. (2015) MR3319482DOI10.1016/j.orl.2015.01.011
- Kayid, M., Izadkhah, S., ALmufarrej, D., 10.1109/TR.2015.2491600, IEEE Trans. Reliab. 65 (2016), 860-866. (2016) DOI10.1109/TR.2015.2491600
- Lai, C.-D., Xie, M., Stochastic Ageing and Dependence for Reliability, Springer, New York (2006). (2006) Zbl1098.62130MR2223811
- Maguluri, G., Zhang, C.-H., Estimation in the mean residual life regression model, J. R. Stat. Soc., Ser. B 56 (1994), 477-489. (1994) Zbl0803.62083MR1278221
- Mansourvar, Z., Martinussen, T., Scheike, T. H., 10.1080/02664763.2015.1043871, J. Appl. Stat. 42 (2015), 2597-2613. (2015) MR3428833DOI10.1080/02664763.2015.1043871
- Nanda, A. K., Bhattacharjee, S., Alam, S. S., 10.1016/j.spl.2005.10.019, Stat. Probab. Lett. 76 (2006), 880-890. (2006) Zbl1089.62120MR2268431DOI10.1016/j.spl.2005.10.019
- Nanda, A. K., Bhattacharjee, S., Balakrishnan, N., 10.1109/TR.2009.2035791, IEEE Trans. Reliab. 59 (2010), 55-65. (2010) DOI10.1109/TR.2009.2035791
- Nanda, A. K., Das, S., Balakrishnan, N., 10.1017/S0269964813000259, Probab. Eng. Inf. Sci. 27 (2013), 553-588. (2013) Zbl1282.90058MR3150113DOI10.1017/S0269964813000259
- Nelsen, R. B., An Introduction to Copulas, Springer Series in Statistics Springer, New York (2006). (2006) Zbl1152.62030MR2197664
- Oakes, D., Dasu, T., 10.1214/lnms/1215092393, Crossing Boundaries: Statistical Essays in Honor of J. Hall IMS Lecture Notes Monogr. Ser. 43 Inst. Math. Statist., Beachwood (2003), 105-116. (2003) Zbl1255.62314MR2125050DOI10.1214/lnms/1215092393
- Shaked, M., Shanthikumar, J. G., Stochastic Orders, Springer Series in Statistics Springer, New York (2007). (2007) MR2265633
- Zahedi, H., 10.1016/0378-3758(92)90135-F, J. Stat. Plann. Inference 29 (1991), 221-228. (1991) MR1133703DOI10.1016/0378-3758(92)90135-F
- Zhao, W., Elsayed, E. A., 10.1080/00207720500160084, Int. J. Syst. Sci. 36 (2005), 689-696. (2005) Zbl1087.90020MR2171201DOI10.1080/00207720500160084
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.