A sharp upper bound for the spectral radius of a nonnegative matrix and applications
Lihua You; Yujie Shu; Xiao-Dong Zhang
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 3, page 701-715
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topYou, Lihua, Shu, Yujie, and Zhang, Xiao-Dong. "A sharp upper bound for the spectral radius of a nonnegative matrix and applications." Czechoslovak Mathematical Journal 66.3 (2016): 701-715. <http://eudml.org/doc/286837>.
@article{You2016,
abstract = {We obtain a sharp upper bound for the spectral radius of a nonnegative matrix. This result is used to present upper bounds for the adjacency spectral radius, the Laplacian spectral radius, the signless Laplacian spectral radius, the distance spectral radius, the distance Laplacian spectral radius, the distance signless Laplacian spectral radius of an undirected graph or a digraph. These results are new or generalize some known results.},
author = {You, Lihua, Shu, Yujie, Zhang, Xiao-Dong},
journal = {Czechoslovak Mathematical Journal},
keywords = {nonnegative matrix; spectral radius; graph; digraph},
language = {eng},
number = {3},
pages = {701-715},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A sharp upper bound for the spectral radius of a nonnegative matrix and applications},
url = {http://eudml.org/doc/286837},
volume = {66},
year = {2016},
}
TY - JOUR
AU - You, Lihua
AU - Shu, Yujie
AU - Zhang, Xiao-Dong
TI - A sharp upper bound for the spectral radius of a nonnegative matrix and applications
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 3
SP - 701
EP - 715
AB - We obtain a sharp upper bound for the spectral radius of a nonnegative matrix. This result is used to present upper bounds for the adjacency spectral radius, the Laplacian spectral radius, the signless Laplacian spectral radius, the distance spectral radius, the distance Laplacian spectral radius, the distance signless Laplacian spectral radius of an undirected graph or a digraph. These results are new or generalize some known results.
LA - eng
KW - nonnegative matrix; spectral radius; graph; digraph
UR - http://eudml.org/doc/286837
ER -
References
top- Aouchiche, M., Hansen, P., Two Laplacians for the distance matrix of a graph, Linear Algebra Appl. 439 (2013), 21-33. (2013) Zbl1282.05086MR3045220
- Berman, A., Plemmons, R. J., Nonnegative Matrices in the Mathematical Sciences, Computer Science and Applied Mathematics New York, Academic Press (1979). (1979) Zbl0484.15016MR0544666
- Bozkurt, S. B., Bozkurt, D., On the signless Laplacian spectral radius of digraphs, Ars Comb. 108 (2013), 193-200. (2013) Zbl1289.05270MR3060265
- Cao, D., Bounds on eigenvalues and chromatic numbers, Linear Algebra Appl. 270 (1998), 1-13. (1998) Zbl0894.05041MR1484072
- Chen, Y.-H., Pan, R.-Y., Zhang, X.-D., 10.1142/S1793830911001152, Discrete Math. Algorithms Appl. 3 (2011), 185-192. (2011) Zbl1222.05149MR2822283DOI10.1142/S1793830911001152
- Cui, S.-Y., Tian, G.-X., Guo, J.-J., A sharp upper bound on the signless Laplacian spectral radius of graphs, Linear Algebra Appl. 439 (2013), 2442-2447. (2013) Zbl1282.05072MR3091317
- Das, K. Ch., A characterization on graphs which achieve the upper bound for the largest Laplacian eigenvalue of graphs, Linear Algebra Appl. 376 (2004), 173-186. (2004) Zbl1042.05059MR2015532
- Das, K. Ch., Kumar, P., 10.1016/j.disc.2003.08.005, Discrete Math. 281 (2004), 149-161. (2004) Zbl1042.05060MR2047763DOI10.1016/j.disc.2003.08.005
- Fiedler, M., A geometric approach to the Laplacian matrix of a graph, Combinatorial and Graph-Theoretical Problems in Linear Algebra R. A. Brualdi 73-98 Proc. Conf. Minnesota 1991. IMA Vol. Math. Appl. 50 Springer, New York (1993). (1993) Zbl0791.05073MR1240957
- Fiedler, M., 10.21136/CMJ.1973.101168, Czech. Math. J. 23 (1973), 298-305. (1973) Zbl0265.05119MR0318007DOI10.21136/CMJ.1973.101168
- Guo, J.-M., 10.1016/j.laa.2004.10.022, Linear Algebra Appl. 400 (2005), 61-66. (2005) Zbl1062.05091MR2131916DOI10.1016/j.laa.2004.10.022
- Guo, J.-M., Li, J., Shiu, W. C., A note on the upper bounds for the Laplacian spectral radius of graphs, Linear Algebra Appl. 439 (2013), 1657-1661. (2013) Zbl1282.05117MR3073893
- Horn, R. A., Johnson, C. R., Matrix Analysis, Cambridge University Press, Cambridge (2013). (2013) Zbl1267.15001MR2978290
- Li, J.-S., Pan, Y.-L., 10.1007/s10114-004-0332-4, Acta Math. Sin., Engl. Ser. 20 (2004), 803-806. (2004) Zbl1074.15026MR2121091DOI10.1007/s10114-004-0332-4
- Li, J.-S., Pan, Y.-L., de Caen's inequality and bounds on the largest Laplacian eigenvalue of a graph, Linear Algebra Appl. 328 (2001), 153-160. (2001) Zbl0988.05062MR1823515
- Li, J.-S., Zhang, X.-D., On the Laplacian eigenvalues of a graph, Linear Algebra Appl. 285 (1998), 305-307. (1998) Zbl0931.05052MR1653547
- Oliveira, C. S., Lima, L. S. de, Abreu, N. M. M. de, Hansen, P., 10.1016/j.dam.2009.06.023, Discrete Appl. Math. 158 (2010), 355-360. (2010) Zbl1225.05174MR2588119DOI10.1016/j.dam.2009.06.023
- Shu, J., Wu, Y., 10.1016/j.laa.2003.07.015, Linear Algebra Appl. 377 (2004), 241-248. (2004) Zbl1030.05073MR2021614DOI10.1016/j.laa.2003.07.015
- Zhang, X.-D., Two sharp upper bounds for the Laplacian eigenvalues, Linear Algebra Appl. 376 (2004), 207-213. (2004) Zbl1037.05032MR2015534
- Zhang, X.-D., Li, J.-S., 10.1007/s101140200157, Acta Math. Sin., Engl. Ser. 18 (2002), 293-300. (2002) Zbl1019.15007MR1910965DOI10.1007/s101140200157
- Zhang, X.-D., Luo, R., 10.1016/S0024-3795(02)00509-8, Linear Algebra Appl. 362 (2003), 109-119. (2003) Zbl1017.05078MR1955457DOI10.1016/S0024-3795(02)00509-8
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.