A sharp upper bound for the spectral radius of a nonnegative matrix and applications
Lihua You; Yujie Shu; Xiao-Dong Zhang
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 3, page 701-715
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topReferences
top- Aouchiche, M., Hansen, P., Two Laplacians for the distance matrix of a graph, Linear Algebra Appl. 439 (2013), 21-33. (2013) Zbl1282.05086MR3045220
- Berman, A., Plemmons, R. J., Nonnegative Matrices in the Mathematical Sciences, Computer Science and Applied Mathematics New York, Academic Press (1979). (1979) Zbl0484.15016MR0544666
- Bozkurt, S. B., Bozkurt, D., On the signless Laplacian spectral radius of digraphs, Ars Comb. 108 (2013), 193-200. (2013) Zbl1289.05270MR3060265
- Cao, D., Bounds on eigenvalues and chromatic numbers, Linear Algebra Appl. 270 (1998), 1-13. (1998) Zbl0894.05041MR1484072
- Chen, Y.-H., Pan, R.-Y., Zhang, X.-D., 10.1142/S1793830911001152, Discrete Math. Algorithms Appl. 3 (2011), 185-192. (2011) Zbl1222.05149MR2822283DOI10.1142/S1793830911001152
- Cui, S.-Y., Tian, G.-X., Guo, J.-J., A sharp upper bound on the signless Laplacian spectral radius of graphs, Linear Algebra Appl. 439 (2013), 2442-2447. (2013) Zbl1282.05072MR3091317
- Das, K. Ch., A characterization on graphs which achieve the upper bound for the largest Laplacian eigenvalue of graphs, Linear Algebra Appl. 376 (2004), 173-186. (2004) Zbl1042.05059MR2015532
- Das, K. Ch., Kumar, P., 10.1016/j.disc.2003.08.005, Discrete Math. 281 (2004), 149-161. (2004) Zbl1042.05060MR2047763DOI10.1016/j.disc.2003.08.005
- Fiedler, M., A geometric approach to the Laplacian matrix of a graph, Combinatorial and Graph-Theoretical Problems in Linear Algebra R. A. Brualdi 73-98 Proc. Conf. Minnesota 1991. IMA Vol. Math. Appl. 50 Springer, New York (1993). (1993) Zbl0791.05073MR1240957
- Fiedler, M., 10.21136/CMJ.1973.101168, Czech. Math. J. 23 (1973), 298-305. (1973) Zbl0265.05119MR0318007DOI10.21136/CMJ.1973.101168
- Guo, J.-M., 10.1016/j.laa.2004.10.022, Linear Algebra Appl. 400 (2005), 61-66. (2005) Zbl1062.05091MR2131916DOI10.1016/j.laa.2004.10.022
- Guo, J.-M., Li, J., Shiu, W. C., A note on the upper bounds for the Laplacian spectral radius of graphs, Linear Algebra Appl. 439 (2013), 1657-1661. (2013) Zbl1282.05117MR3073893
- Horn, R. A., Johnson, C. R., Matrix Analysis, Cambridge University Press, Cambridge (2013). (2013) Zbl1267.15001MR2978290
- Li, J.-S., Pan, Y.-L., 10.1007/s10114-004-0332-4, Acta Math. Sin., Engl. Ser. 20 (2004), 803-806. (2004) Zbl1074.15026MR2121091DOI10.1007/s10114-004-0332-4
- Li, J.-S., Pan, Y.-L., de Caen's inequality and bounds on the largest Laplacian eigenvalue of a graph, Linear Algebra Appl. 328 (2001), 153-160. (2001) Zbl0988.05062MR1823515
- Li, J.-S., Zhang, X.-D., On the Laplacian eigenvalues of a graph, Linear Algebra Appl. 285 (1998), 305-307. (1998) Zbl0931.05052MR1653547
- Oliveira, C. S., Lima, L. S. de, Abreu, N. M. M. de, Hansen, P., 10.1016/j.dam.2009.06.023, Discrete Appl. Math. 158 (2010), 355-360. (2010) Zbl1225.05174MR2588119DOI10.1016/j.dam.2009.06.023
- Shu, J., Wu, Y., 10.1016/j.laa.2003.07.015, Linear Algebra Appl. 377 (2004), 241-248. (2004) Zbl1030.05073MR2021614DOI10.1016/j.laa.2003.07.015
- Zhang, X.-D., Two sharp upper bounds for the Laplacian eigenvalues, Linear Algebra Appl. 376 (2004), 207-213. (2004) Zbl1037.05032MR2015534
- Zhang, X.-D., Li, J.-S., 10.1007/s101140200157, Acta Math. Sin., Engl. Ser. 18 (2002), 293-300. (2002) Zbl1019.15007MR1910965DOI10.1007/s101140200157
- Zhang, X.-D., Luo, R., 10.1016/S0024-3795(02)00509-8, Linear Algebra Appl. 362 (2003), 109-119. (2003) Zbl1017.05078MR1955457DOI10.1016/S0024-3795(02)00509-8