Linear optimization with bipolar max-parametric hamacher fuzzy relation equation constraints

Samaneh Aliannezhadi; Ali Abbasi Molai; Behnaz Hedayatfar

Kybernetika (2016)

  • Volume: 52, Issue: 4, page 531-557
  • ISSN: 0023-5954

Abstract

top
In this paper, the linear programming problem subject to the Bipolar Fuzzy Relation Equation (BFRE) constraints with the max-parametric hamacher composition operators is studied. The structure of its feasible domain is investigated and its feasible solution set determined. Some necessary and sufficient conditions are presented for its solution existence. Then the problem is converted to an equivalent programming problem. Some rules are proposed to reduce the dimensions of problem. Under these rules, some of the optimal variables are found without solving the problem. An algorithm is then designed to find an upper bound for its optimal objective value. With regard to this algorithm, a modified branch and bound method is extended to solve the problem. We combine the rules, the algorithm, and the modified branch and bound method in terms of an algorithm to solve the original problem.

How to cite

top

Aliannezhadi, Samaneh, Abbasi Molai, Ali, and Hedayatfar, Behnaz. "Linear optimization with bipolar max-parametric hamacher fuzzy relation equation constraints." Kybernetika 52.4 (2016): 531-557. <http://eudml.org/doc/286839>.

@article{Aliannezhadi2016,
abstract = {In this paper, the linear programming problem subject to the Bipolar Fuzzy Relation Equation (BFRE) constraints with the max-parametric hamacher composition operators is studied. The structure of its feasible domain is investigated and its feasible solution set determined. Some necessary and sufficient conditions are presented for its solution existence. Then the problem is converted to an equivalent programming problem. Some rules are proposed to reduce the dimensions of problem. Under these rules, some of the optimal variables are found without solving the problem. An algorithm is then designed to find an upper bound for its optimal objective value. With regard to this algorithm, a modified branch and bound method is extended to solve the problem. We combine the rules, the algorithm, and the modified branch and bound method in terms of an algorithm to solve the original problem.},
author = {Aliannezhadi, Samaneh, Abbasi Molai, Ali, Hedayatfar, Behnaz},
journal = {Kybernetika},
keywords = {bipolar fuzzy relation equations; bipolar variables; linear optimization; modified branch and bound method; max-parametric hamacher compositions; bipolar fuzzy relation equations; bipolar variables; linear optimization; modified branch and bound method; max-parametric hamacher compositions},
language = {eng},
number = {4},
pages = {531-557},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Linear optimization with bipolar max-parametric hamacher fuzzy relation equation constraints},
url = {http://eudml.org/doc/286839},
volume = {52},
year = {2016},
}

TY - JOUR
AU - Aliannezhadi, Samaneh
AU - Abbasi Molai, Ali
AU - Hedayatfar, Behnaz
TI - Linear optimization with bipolar max-parametric hamacher fuzzy relation equation constraints
JO - Kybernetika
PY - 2016
PB - Institute of Information Theory and Automation AS CR
VL - 52
IS - 4
SP - 531
EP - 557
AB - In this paper, the linear programming problem subject to the Bipolar Fuzzy Relation Equation (BFRE) constraints with the max-parametric hamacher composition operators is studied. The structure of its feasible domain is investigated and its feasible solution set determined. Some necessary and sufficient conditions are presented for its solution existence. Then the problem is converted to an equivalent programming problem. Some rules are proposed to reduce the dimensions of problem. Under these rules, some of the optimal variables are found without solving the problem. An algorithm is then designed to find an upper bound for its optimal objective value. With regard to this algorithm, a modified branch and bound method is extended to solve the problem. We combine the rules, the algorithm, and the modified branch and bound method in terms of an algorithm to solve the original problem.
LA - eng
KW - bipolar fuzzy relation equations; bipolar variables; linear optimization; modified branch and bound method; max-parametric hamacher compositions; bipolar fuzzy relation equations; bipolar variables; linear optimization; modified branch and bound method; max-parametric hamacher compositions
UR - http://eudml.org/doc/286839
ER -

References

top
  1. Molai, A. Abbasi, 10.1007/s00500-014-1464-9, Soft Computing 19 (2015), 3009-3027. DOI10.1007/s00500-014-1464-9
  2. Chen, L., Wang, P. P., 10.1007/s00500-001-0157-3, Soft Computing 6 (2002), 428-435. Zbl1024.03520DOI10.1007/s00500-001-0157-3
  3. Chen, L., Wang, P. P., 10.1007/s00500-006-0050-1, Soft Computing 11 (2007), 33-40. DOI10.1007/s00500-006-0050-1
  4. Baets, B. De, 10.1007/978-1-4615-4429-6_7, In: Fundamentals of fuzzy sets, the handbooks of fuzzy sets series (D. Dubois and H. Prade, eds.), Dordrecht, Kluwer 2000, Vol. 1, pp. 291-340. Zbl0970.03044MR1890236DOI10.1007/978-1-4615-4429-6_7
  5. Nola, A. Di, Pedrycz, W., Sessa, S., On solution of fuzzy relational equations and their characterization., BUSEFAL 12 (1982), 60-71. 
  6. Nola, A. Di, Pedrycz, W., Sessa, S., Sanchez, E., 10.1016/0165-0114(91)90170-u, Fuzzy Sets and Systems 40 (1991), 415-429. Zbl0727.04005MR1104335DOI10.1016/0165-0114(91)90170-u
  7. Nola, A. Di, Pedrycz, W., Sessa, S., Wang, P. Z., Fuzzy relation equations under triangular norms: a survey and new results., Stochastica 8 (1984), 99-145. MR0783401
  8. Nola, A. Di, Sessa, S., Pedrycz, W., Sanchez, E., 10.1007/978-94-017-1650-5, Kluwer, Dordrecht 1989. Zbl0694.94025MR1120025DOI10.1007/978-94-017-1650-5
  9. Fang, S.-C., Li, G., 10.1016/s0165-0114(97)00184-x, Fuzzy Sets and Systems 103 (1999), 107-113. Zbl0933.90069MR1674026DOI10.1016/s0165-0114(97)00184-x
  10. Feng, S., Ma, Y., Li, J., 10.1109/cis.2012.42, In: Eighth International Conference on Computational Intelligence and Security, Guangzhou 2012. DOI10.1109/cis.2012.42
  11. Freson, S., Baets, B. De, Meyer, H. De, 10.1016/j.ins.2011.06.009, Inform. Sci. 234 (2013), 3-15. Zbl1284.90104MR3039624DOI10.1016/j.ins.2011.06.009
  12. Gottwald, S., 10.1007/978-3-322-86812-1, Vieweg, Wiesbaden 1993. Zbl0782.94025MR1218623DOI10.1007/978-3-322-86812-1
  13. Gottwald, S., Generalized Solvability Behaviour for Systems of Fuzzy Equations., In: Discovering the world with fuzzy logic (V. Novák and I. Perfilieva, eds.), Physica-Verlag, Heidelberg 2000, pp. 401-430. Zbl1006.03033MR1858109
  14. Guu, S.-M., Wu, Y.-K., 10.1023/a:1020955112523, Fuzzy Optimization and Decision Making 1 (2002), 347-360. Zbl1055.90094MR1942675DOI10.1023/a:1020955112523
  15. Guu, S.-M., Wu, Y.-K., 10.1016/j.fss.2009.03.007, Fuzzy Sets and Systems 161 (2010), 285-297. Zbl1190.90297MR2566245DOI10.1016/j.fss.2009.03.007
  16. Klir, G., Yuan, B., 10.1021/ci950144a, Upper Saddle River, Prentice Hall, NJ 1995. Zbl0915.03001MR1329731DOI10.1021/ci950144a
  17. Li, J., Feng, S., Mi, H., 10.1016/j.phpro.2012.05.276, Physics Procedia 33 (2012), 1717-1724. DOI10.1016/j.phpro.2012.05.276
  18. Li, P., Fang, S.-C., 10.1007/s10700-009-9059-0, Fuzzy Optimization and Decision Making 8 (2009), 179-229. MR2511474DOI10.1007/s10700-009-9059-0
  19. Li, P., Jin, Q., 10.1007/s10700-012-9122-0, Fuzzy Optimization and Decision Making 11 (2012), 227-240. Zbl1254.03101MR2923611DOI10.1007/s10700-012-9122-0
  20. Li, P., Jin, Q., On the resolution of bipolar max-min equations., In: IEEE Trans. Fuzzy Systems, second review, 2013. 
  21. Li, P., Liu, Y., 10.1007/s00500-013-1152-1, Soft Computing 18 (2014), 1399-1404. Zbl1335.90123DOI10.1007/s00500-013-1152-1
  22. Loetamonphong, J., Fang, S.-C., 10.1016/s0165-0114(98)00417-5, Fuzzy Sets and Systems 118 (2001), 509-517. Zbl1044.90533MR1809397DOI10.1016/s0165-0114(98)00417-5
  23. Markovskii, A., 10.1023/b:aurc.0000041426.51975.50, Automation and Remote Control 65 (2004), 1486-1495. Zbl1114.90488MR2097942DOI10.1023/b:aurc.0000041426.51975.50
  24. Markovskii, A., 10.1016/j.fss.2005.02.010, Fuzzy Sets and Systems 153 (2005), 261-273. Zbl1073.03538MR2150284DOI10.1016/j.fss.2005.02.010
  25. Miyakoshi, M., Shimbo, M., 10.1016/s0165-0114(85)80005-1, Fuzzy Sets and Systems 16 (1985), 53-63. Zbl0582.94031MR0790742DOI10.1016/s0165-0114(85)80005-1
  26. Pedrycz, W., Fuzzy Control and Fuzzy Systems., Research Studies Press/Wiely, New York 1989. Zbl0839.93006MR1033268
  27. Pedrycz, W., 10.1016/0165-0114(91)90047-t, Fuzzy Sets and Systems 40 (1991), 77-106. Zbl0721.94030MR1103657DOI10.1016/0165-0114(91)90047-t
  28. Peeva, K., Kyosev, Y., Fuzzy Relational Calculus: Theory, Applications and Software., World Scientific, New Jersey 2004. Zbl1083.03048MR2379415
  29. Sanchez, E., 10.1016/s0019-9958(76)90446-0, Inform. Control 30 (1976), 38-48. MR0437410DOI10.1016/s0019-9958(76)90446-0
  30. Sanchez, E., Solutions in composite fuzzy relation equations: application to medical diagnosis in Brouwerian logic., In: Fuzzy Automata and Decision Processes (M. M. Gupta, G. N. Saridis, B. R. Gaines, eds.), North-Holland, Amsterdam 1977, pp. 221-234. MR0476591
  31. Shieh, B.-S., 10.1016/j.ins.2010.10.024, Inform. Sci. 181 (2011), 832-841. Zbl1211.90326MR2748016DOI10.1016/j.ins.2010.10.024
  32. Thapar, A., Pandey, D., Gaur, S. K., 10.1016/j.asoc.2009.02.004, Applied Soft Computing 9 (2009), 1097-1101. DOI10.1016/j.asoc.2009.02.004
  33. Wu, Y.-K., Guu, S.-M., 10.1023/b:fodm.0000036862.45420.ea, Fuzzy Optimization and Decision Making 3 (2004), 271-278. Zbl1091.90087MR2102801DOI10.1023/b:fodm.0000036862.45420.ea
  34. Wu, Y.-K., Guu, S.-M., 10.1016/j.fss.2004.09.010, Fuzzy Sets and Systems 150 (2005), 147-162. Zbl1074.90057MR2114318DOI10.1016/j.fss.2004.09.010
  35. Wu, Y.-K., Guu, S.-M., Liu, J. Y.-C., 10.1109/tfuzz.2002.800657, IEEE Trans. Fuzzy Systems 10 (2002), 552-558. DOI10.1109/tfuzz.2002.800657
  36. Yang, S.-J., 10.1016/j.fss.2014.04.007, Fuzzy Sets and Systems 255 (2014), 41-51. Zbl1334.90223MR3258150DOI10.1016/j.fss.2014.04.007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.