Uniqueness and differential polynomials of meromorphic functions sharing a nonzero polynomial
Mathematica Bohemica (2016)
- Volume: 141, Issue: 3, page 297-313
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topSahoo, Pulak. "Uniqueness and differential polynomials of meromorphic functions sharing a nonzero polynomial." Mathematica Bohemica 141.3 (2016): 297-313. <http://eudml.org/doc/286848>.
@article{Sahoo2016,
abstract = {Let $k$ be a nonnegative integer or infinity. For $a\in \mathbb \{C\}\cup \lbrace \infty \rbrace $ we denote by $E_\{k\}(a;f)$ the set of all $a$-points of $f$ where an $a$-point of multiplicity $m$ is counted $m$ times if $m\le k$ and $k+1$ times if $m>k$. If $E_\{k\}(a;f)= E_\{k\}(a;g)$ then we say that $f$ and $g$ share the value $a$ with weight $k$. Using this idea of sharing values we study the uniqueness of meromorphic functions whose certain nonlinear differential polynomials share a nonzero polynomial with finite weight. The results of the paper improve and generalize the related results due to Xia and Xu (2011) and the results of Li and Yi (2011).},
author = {Sahoo, Pulak},
journal = {Mathematica Bohemica},
keywords = {uniqueness; meromorphic function; differential polynomial; weighted sharing},
language = {eng},
number = {3},
pages = {297-313},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Uniqueness and differential polynomials of meromorphic functions sharing a nonzero polynomial},
url = {http://eudml.org/doc/286848},
volume = {141},
year = {2016},
}
TY - JOUR
AU - Sahoo, Pulak
TI - Uniqueness and differential polynomials of meromorphic functions sharing a nonzero polynomial
JO - Mathematica Bohemica
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 141
IS - 3
SP - 297
EP - 313
AB - Let $k$ be a nonnegative integer or infinity. For $a\in \mathbb {C}\cup \lbrace \infty \rbrace $ we denote by $E_{k}(a;f)$ the set of all $a$-points of $f$ where an $a$-point of multiplicity $m$ is counted $m$ times if $m\le k$ and $k+1$ times if $m>k$. If $E_{k}(a;f)= E_{k}(a;g)$ then we say that $f$ and $g$ share the value $a$ with weight $k$. Using this idea of sharing values we study the uniqueness of meromorphic functions whose certain nonlinear differential polynomials share a nonzero polynomial with finite weight. The results of the paper improve and generalize the related results due to Xia and Xu (2011) and the results of Li and Yi (2011).
LA - eng
KW - uniqueness; meromorphic function; differential polynomial; weighted sharing
UR - http://eudml.org/doc/286848
ER -
References
top- Banerjee, A., 10.5666/KMJ.2011.51.1.043, Kyungpook Math. J. 51 (2011), 43-58. (2011) Zbl1218.30073MR2784645DOI10.5666/KMJ.2011.51.1.043
- Banerjee, A., 10.1155/IJMMS.2005.3587, Int. J. Math. Math. Sci. 2005 (2005), 3587-3598. (2005) Zbl1093.30024MR2205158DOI10.1155/IJMMS.2005.3587
- Bhoosnurmath, S. S., Dyavanal, R. S., 10.1016/j.camwa.2006.08.045, Comput. Math. Appl. 53 (2007), 1191-1205. (2007) Zbl1170.30011MR2327673DOI10.1016/j.camwa.2006.08.045
- Fang, M.-L., 10.1016/S0898-1221(02)00194-3, Comput. Math. Appl. 44 (2002), 823-831. (2002) Zbl1035.30017MR1925824DOI10.1016/S0898-1221(02)00194-3
- Fang, C.-Y., Fang, M.-L., 10.1016/S0898-1221(02)00175-X, Comput. Math. Appl. 44 (2002), 607-617. (2002) Zbl1035.30018MR1925805DOI10.1016/S0898-1221(02)00175-X
- Hayman, W. K., Meromorphic Functions, Oxford Mathematical Monographs Clarendon Press, Oxford (1964). (1964) Zbl0115.06203MR0164038
- Lahiri, I., On a question of Hong Xun Yi, Arch. Math., Brno 38 (2002), 119-128. (2002) Zbl1087.30028MR1909593
- Lahiri, I., 10.1155/S0161171201011036, Int. J. Math. Math. Sci. 28 (2001), 83-91. (2001) Zbl0999.30023MR1885054DOI10.1155/S0161171201011036
- Lahiri, I., 10.1080/17476930108815411, Complex Variables, Theory Appl. 46 (2001), 241-253. (2001) Zbl1025.30027MR1869738DOI10.1080/17476930108815411
- Lahiri, I., Uniqueness of meromorphic functions as governed by their differential polynomials, Yokohama Math. J. 44 (1997), 147-156. (1997) Zbl0884.30023MR1453358
- Lahiri, I., Dewan, S., 10.2996/kmj/1050496651, Kodai Math. J. 26 (2003), 95-100. (2003) Zbl1077.30025MR1966685DOI10.2996/kmj/1050496651
- Li, X.-M., Yi, H.-X., 10.1016/j.camwa.2011.04.005, Comput. Math. Appl. 62 (2011), 539-550. (2011) Zbl1228.30024MR2817891DOI10.1016/j.camwa.2011.04.005
- Lin, W., Yi, H., 10.1080/02781070412331298624, Complex Variables, Theory Appl. 49 (2004), 793-806. (2004) Zbl1067.30065MR2097218DOI10.1080/02781070412331298624
- Sahoo, P., 10.4064/ap100-2-3, Ann. Pol. Math. 100 (2011), 127-145. (2011) Zbl1233.30020MR2747044DOI10.4064/ap100-2-3
- Sahoo, P., Meromorphic functions that share fixed points with finite weights, Bull. Math. Anal. Appl. (electronic only) 2 (2010), 106-118. (2010) Zbl1312.30049MR2747893
- Xia, J., Xu, Y., 10.2298/FIL1101185X, Filomat 25 (2011), 185-194. (2011) Zbl1265.30161MR2932783DOI10.2298/FIL1101185X
- Yang, C. C., 10.1007/BF01110921, Math. Z. 125 (1972), 107-112. (1972) Zbl0217.38402MR0294642DOI10.1007/BF01110921
- Yang, C.-C., Yi, H.-X., Uniqueness Theory of Meromorphic Functions, Mathematics and Its Applications 557 Kluwer Academic Publishers, Dordrecht; Science Press, Beijing (2003). (2003) Zbl1070.30011MR2105668
- Zhang, J.-L., Yang, L.-Z., Some results related to a conjecture of R. Brück, JIPAM, J. Inequal. Pure Appl. Math. (electronic only) 8 (2007), Article No. 18, 11 pages. (2007) Zbl1136.30009MR2295712
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.