Uniqueness and differential polynomials of meromorphic functions sharing a nonzero polynomial

Pulak Sahoo

Mathematica Bohemica (2016)

  • Volume: 141, Issue: 3, page 297-313
  • ISSN: 0862-7959

Abstract

top
Let k be a nonnegative integer or infinity. For a { } we denote by E k ( a ; f ) the set of all a -points of f where an a -point of multiplicity m is counted m times if m k and k + 1 times if m > k . If E k ( a ; f ) = E k ( a ; g ) then we say that f and g share the value a with weight k . Using this idea of sharing values we study the uniqueness of meromorphic functions whose certain nonlinear differential polynomials share a nonzero polynomial with finite weight. The results of the paper improve and generalize the related results due to Xia and Xu (2011) and the results of Li and Yi (2011).

How to cite

top

Sahoo, Pulak. "Uniqueness and differential polynomials of meromorphic functions sharing a nonzero polynomial." Mathematica Bohemica 141.3 (2016): 297-313. <http://eudml.org/doc/286848>.

@article{Sahoo2016,
abstract = {Let $k$ be a nonnegative integer or infinity. For $a\in \mathbb \{C\}\cup \lbrace \infty \rbrace $ we denote by $E_\{k\}(a;f)$ the set of all $a$-points of $f$ where an $a$-point of multiplicity $m$ is counted $m$ times if $m\le k$ and $k+1$ times if $m>k$. If $E_\{k\}(a;f)= E_\{k\}(a;g)$ then we say that $f$ and $g$ share the value $a$ with weight $k$. Using this idea of sharing values we study the uniqueness of meromorphic functions whose certain nonlinear differential polynomials share a nonzero polynomial with finite weight. The results of the paper improve and generalize the related results due to Xia and Xu (2011) and the results of Li and Yi (2011).},
author = {Sahoo, Pulak},
journal = {Mathematica Bohemica},
keywords = {uniqueness; meromorphic function; differential polynomial; weighted sharing},
language = {eng},
number = {3},
pages = {297-313},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Uniqueness and differential polynomials of meromorphic functions sharing a nonzero polynomial},
url = {http://eudml.org/doc/286848},
volume = {141},
year = {2016},
}

TY - JOUR
AU - Sahoo, Pulak
TI - Uniqueness and differential polynomials of meromorphic functions sharing a nonzero polynomial
JO - Mathematica Bohemica
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 141
IS - 3
SP - 297
EP - 313
AB - Let $k$ be a nonnegative integer or infinity. For $a\in \mathbb {C}\cup \lbrace \infty \rbrace $ we denote by $E_{k}(a;f)$ the set of all $a$-points of $f$ where an $a$-point of multiplicity $m$ is counted $m$ times if $m\le k$ and $k+1$ times if $m>k$. If $E_{k}(a;f)= E_{k}(a;g)$ then we say that $f$ and $g$ share the value $a$ with weight $k$. Using this idea of sharing values we study the uniqueness of meromorphic functions whose certain nonlinear differential polynomials share a nonzero polynomial with finite weight. The results of the paper improve and generalize the related results due to Xia and Xu (2011) and the results of Li and Yi (2011).
LA - eng
KW - uniqueness; meromorphic function; differential polynomial; weighted sharing
UR - http://eudml.org/doc/286848
ER -

References

top
  1. Banerjee, A., 10.5666/KMJ.2011.51.1.043, Kyungpook Math. J. 51 (2011), 43-58. (2011) Zbl1218.30073MR2784645DOI10.5666/KMJ.2011.51.1.043
  2. Banerjee, A., 10.1155/IJMMS.2005.3587, Int. J. Math. Math. Sci. 2005 (2005), 3587-3598. (2005) Zbl1093.30024MR2205158DOI10.1155/IJMMS.2005.3587
  3. Bhoosnurmath, S. S., Dyavanal, R. S., 10.1016/j.camwa.2006.08.045, Comput. Math. Appl. 53 (2007), 1191-1205. (2007) Zbl1170.30011MR2327673DOI10.1016/j.camwa.2006.08.045
  4. Fang, M.-L., 10.1016/S0898-1221(02)00194-3, Comput. Math. Appl. 44 (2002), 823-831. (2002) Zbl1035.30017MR1925824DOI10.1016/S0898-1221(02)00194-3
  5. Fang, C.-Y., Fang, M.-L., 10.1016/S0898-1221(02)00175-X, Comput. Math. Appl. 44 (2002), 607-617. (2002) Zbl1035.30018MR1925805DOI10.1016/S0898-1221(02)00175-X
  6. Hayman, W. K., Meromorphic Functions, Oxford Mathematical Monographs Clarendon Press, Oxford (1964). (1964) Zbl0115.06203MR0164038
  7. Lahiri, I., On a question of Hong Xun Yi, Arch. Math., Brno 38 (2002), 119-128. (2002) Zbl1087.30028MR1909593
  8. Lahiri, I., 10.1155/S0161171201011036, Int. J. Math. Math. Sci. 28 (2001), 83-91. (2001) Zbl0999.30023MR1885054DOI10.1155/S0161171201011036
  9. Lahiri, I., 10.1080/17476930108815411, Complex Variables, Theory Appl. 46 (2001), 241-253. (2001) Zbl1025.30027MR1869738DOI10.1080/17476930108815411
  10. Lahiri, I., Uniqueness of meromorphic functions as governed by their differential polynomials, Yokohama Math. J. 44 (1997), 147-156. (1997) Zbl0884.30023MR1453358
  11. Lahiri, I., Dewan, S., 10.2996/kmj/1050496651, Kodai Math. J. 26 (2003), 95-100. (2003) Zbl1077.30025MR1966685DOI10.2996/kmj/1050496651
  12. Li, X.-M., Yi, H.-X., 10.1016/j.camwa.2011.04.005, Comput. Math. Appl. 62 (2011), 539-550. (2011) Zbl1228.30024MR2817891DOI10.1016/j.camwa.2011.04.005
  13. Lin, W., Yi, H., 10.1080/02781070412331298624, Complex Variables, Theory Appl. 49 (2004), 793-806. (2004) Zbl1067.30065MR2097218DOI10.1080/02781070412331298624
  14. Sahoo, P., 10.4064/ap100-2-3, Ann. Pol. Math. 100 (2011), 127-145. (2011) Zbl1233.30020MR2747044DOI10.4064/ap100-2-3
  15. Sahoo, P., Meromorphic functions that share fixed points with finite weights, Bull. Math. Anal. Appl. (electronic only) 2 (2010), 106-118. (2010) Zbl1312.30049MR2747893
  16. Xia, J., Xu, Y., 10.2298/FIL1101185X, Filomat 25 (2011), 185-194. (2011) Zbl1265.30161MR2932783DOI10.2298/FIL1101185X
  17. Yang, C. C., 10.1007/BF01110921, Math. Z. 125 (1972), 107-112. (1972) Zbl0217.38402MR0294642DOI10.1007/BF01110921
  18. Yang, C.-C., Yi, H.-X., Uniqueness Theory of Meromorphic Functions, Mathematics and Its Applications 557 Kluwer Academic Publishers, Dordrecht; Science Press, Beijing (2003). (2003) Zbl1070.30011MR2105668
  19. Zhang, J.-L., Yang, L.-Z., Some results related to a conjecture of R. Brück, JIPAM, J. Inequal. Pure Appl. Math. (electronic only) 8 (2007), Article No. 18, 11 pages. (2007) Zbl1136.30009MR2295712

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.