On non-existence of moment estimators of the GED power parameter
Discussiones Mathematicae Probability and Statistics (2016)
- Volume: 36, Issue: 1-2, page 5-23
- ISSN: 1509-9423
Access Full Article
topAbstract
topHow to cite
topBartosz Stawiarski. "On non-existence of moment estimators of the GED power parameter." Discussiones Mathematicae Probability and Statistics 36.1-2 (2016): 5-23. <http://eudml.org/doc/286900>.
@article{BartoszStawiarski2016,
abstract = {We reconsider the problem of the power (also called shape) parameter estimation within symmetric, zero-mean, unit-variance one-parameter Generalized Error Distribution family. Focusing on moment estimators for the parameter in question, through extensive Monte Carlo simulations we analyze the probability of non-existence of moment estimators for small and moderate samples, depending on the shape parameter value and the sample size. We consider a nonparametric bootstrap approach and prove its consistency. However, despite its established asymptotics, bootstrap does not substantially improve the statistical inference based on moment estimators once they fall into the non-existence area in case of small and moderate sample sizes.},
author = {Bartosz Stawiarski},
journal = {Discussiones Mathematicae Probability and Statistics},
keywords = {Generalized Error Distribution; nonparametric bootstrap; bootstrap consistency; moment estimator; power parameter},
language = {eng},
number = {1-2},
pages = {5-23},
title = {On non-existence of moment estimators of the GED power parameter},
url = {http://eudml.org/doc/286900},
volume = {36},
year = {2016},
}
TY - JOUR
AU - Bartosz Stawiarski
TI - On non-existence of moment estimators of the GED power parameter
JO - Discussiones Mathematicae Probability and Statistics
PY - 2016
VL - 36
IS - 1-2
SP - 5
EP - 23
AB - We reconsider the problem of the power (also called shape) parameter estimation within symmetric, zero-mean, unit-variance one-parameter Generalized Error Distribution family. Focusing on moment estimators for the parameter in question, through extensive Monte Carlo simulations we analyze the probability of non-existence of moment estimators for small and moderate samples, depending on the shape parameter value and the sample size. We consider a nonparametric bootstrap approach and prove its consistency. However, despite its established asymptotics, bootstrap does not substantially improve the statistical inference based on moment estimators once they fall into the non-existence area in case of small and moderate sample sizes.
LA - eng
KW - Generalized Error Distribution; nonparametric bootstrap; bootstrap consistency; moment estimator; power parameter
UR - http://eudml.org/doc/286900
ER -
References
top- [1] A. Ayebo and T.J. Kozubowski, An asymmetric generalization of Gaussian and laplace laws, J. Probab. Statist. Sci. 1 (2) (2004), 187-210.
- [2] A. Azzalini, Further results on a class of distributions which includes the normal ones, Statistica 46 (1986), 199-208. Zbl0606.62013
- [3] P.J. Bickel and D.A. Freedman, Some asymptotic theory for the bootstrap, Ann. Stat. 9 (6) (1981), 1196-1217. Zbl0449.62034
- [4] G.E. Box and G.C. Tiao, Bayesian Inference in Statistical Analysis (Addison Wesley Ed., 1973). Zbl0271.62044
- [5] Y. Chen and N.C. Beaulieu, Novel low-complexity estimators for the shape parameter of the Generalized Gaussian Distribution, IEEE Transactions on Vehicular Technology 58 (4) (2009), 2067-2071.
- [6] D. Coin, A method to estimate power parameter in exponential power distribution via polynomial regression, Banca D’Italia 834 (2011), working paper.
- [7] C. Fernandez, J. Osiewalski and M.F.J. Steel, Modeling and inference with vdistributions, J. Amer. Statist. Association 90 (432) (1995), 1331-1340. Zbl0868.62045
- [8] G. González-Farías, J.A. Domnguez-Molina and R.M. Rodrguez-Dagnino, Efficiency of the approximated shape parameter estimator in the generalized Gaussian distribution, IEEE Transactions on Vehicular Technology 58 (8) (2009), 4214-4223.
- [9] R. Krupiński and J. Purczyński, Approximated fast estimator for the shape parameter of Generalized Gaussian Distribution, Signal Processing 86 (2006), 205-211. Zbl1163.94354
- [10] G. Lunetta, Di una generalizzazione dello schema della curva normale, Annali della Facolta di Economia e Commercio di Palermo 17 (1963), 237-244.
- [11] S. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans. Pattern Anal. Machine Intell. 11 (1989), 674-693. Zbl0709.94650
- [12] A.M. Mineo and M. Ruggieri, A software tool for the exponential power distribution: The normalp package, J. Statist. Software 12 (4) (2005), 1-24.
- [13] S. Nadarajah, A generalized normal distribution, J. Appl. Stat. 32 (7) (2005), 685-694. Zbl1121.62447
- [14] J. Purczyński, Simplified method of GED distribution parameters estimation, Folia Oeconomica Stetinensia 10 (2) (2012), 35-49.
- [15] K.-S. Song, A globally convergent and consistent method for estimating the shape parameter of a Generalized Gaussian Distribution, IEEE Transactions on Information Theory 52 (2) (2006), 510-527. Zbl1317.62018
- [16] M.T. Subbotin, On the law of frequency of errors, Matematicheskii Sbornik 31 (1923), 296-301. Zbl49.0370.01
- [17] P.R. Tadikamalla, Random sampling from the exponential power distribution, J. Amer. Statist. Association 75 (1980), 683-686. Zbl0477.65005
- [18] Van der Vaart, Asymptotic Statistics (Cambridge University Press, 1998).
- [19] M.K. Varanasi and B. Aazhang, Parametric generalized Gaussian density estimation, J. Acoustical Society of America 86 (4) (1989), 1404-1415.
- [20] D. Zhu and V. Zinde-Walsh, Properties and estimation of asymmetric exponential power distribution, J. Econometrics 148 (2009), 86-99. Zbl06600549
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.