On non-existence of moment estimators of the GED power parameter

Bartosz Stawiarski

Discussiones Mathematicae Probability and Statistics (2016)

  • Volume: 36, Issue: 1-2, page 5-23
  • ISSN: 1509-9423

Abstract

top
We reconsider the problem of the power (also called shape) parameter estimation within symmetric, zero-mean, unit-variance one-parameter Generalized Error Distribution family. Focusing on moment estimators for the parameter in question, through extensive Monte Carlo simulations we analyze the probability of non-existence of moment estimators for small and moderate samples, depending on the shape parameter value and the sample size. We consider a nonparametric bootstrap approach and prove its consistency. However, despite its established asymptotics, bootstrap does not substantially improve the statistical inference based on moment estimators once they fall into the non-existence area in case of small and moderate sample sizes.

How to cite

top

Bartosz Stawiarski. "On non-existence of moment estimators of the GED power parameter." Discussiones Mathematicae Probability and Statistics 36.1-2 (2016): 5-23. <http://eudml.org/doc/286900>.

@article{BartoszStawiarski2016,
abstract = {We reconsider the problem of the power (also called shape) parameter estimation within symmetric, zero-mean, unit-variance one-parameter Generalized Error Distribution family. Focusing on moment estimators for the parameter in question, through extensive Monte Carlo simulations we analyze the probability of non-existence of moment estimators for small and moderate samples, depending on the shape parameter value and the sample size. We consider a nonparametric bootstrap approach and prove its consistency. However, despite its established asymptotics, bootstrap does not substantially improve the statistical inference based on moment estimators once they fall into the non-existence area in case of small and moderate sample sizes.},
author = {Bartosz Stawiarski},
journal = {Discussiones Mathematicae Probability and Statistics},
keywords = {Generalized Error Distribution; nonparametric bootstrap; bootstrap consistency; moment estimator; power parameter},
language = {eng},
number = {1-2},
pages = {5-23},
title = {On non-existence of moment estimators of the GED power parameter},
url = {http://eudml.org/doc/286900},
volume = {36},
year = {2016},
}

TY - JOUR
AU - Bartosz Stawiarski
TI - On non-existence of moment estimators of the GED power parameter
JO - Discussiones Mathematicae Probability and Statistics
PY - 2016
VL - 36
IS - 1-2
SP - 5
EP - 23
AB - We reconsider the problem of the power (also called shape) parameter estimation within symmetric, zero-mean, unit-variance one-parameter Generalized Error Distribution family. Focusing on moment estimators for the parameter in question, through extensive Monte Carlo simulations we analyze the probability of non-existence of moment estimators for small and moderate samples, depending on the shape parameter value and the sample size. We consider a nonparametric bootstrap approach and prove its consistency. However, despite its established asymptotics, bootstrap does not substantially improve the statistical inference based on moment estimators once they fall into the non-existence area in case of small and moderate sample sizes.
LA - eng
KW - Generalized Error Distribution; nonparametric bootstrap; bootstrap consistency; moment estimator; power parameter
UR - http://eudml.org/doc/286900
ER -

References

top
  1. [1] A. Ayebo and T.J. Kozubowski, An asymmetric generalization of Gaussian and laplace laws, J. Probab. Statist. Sci. 1 (2) (2004), 187-210. 
  2. [2] A. Azzalini, Further results on a class of distributions which includes the normal ones, Statistica 46 (1986), 199-208. Zbl0606.62013
  3. [3] P.J. Bickel and D.A. Freedman, Some asymptotic theory for the bootstrap, Ann. Stat. 9 (6) (1981), 1196-1217. Zbl0449.62034
  4. [4] G.E. Box and G.C. Tiao, Bayesian Inference in Statistical Analysis (Addison Wesley Ed., 1973). Zbl0271.62044
  5. [5] Y. Chen and N.C. Beaulieu, Novel low-complexity estimators for the shape parameter of the Generalized Gaussian Distribution, IEEE Transactions on Vehicular Technology 58 (4) (2009), 2067-2071. 
  6. [6] D. Coin, A method to estimate power parameter in exponential power distribution via polynomial regression, Banca D’Italia 834 (2011), working paper. 
  7. [7] C. Fernandez, J. Osiewalski and M.F.J. Steel, Modeling and inference with vdistributions, J. Amer. Statist. Association 90 (432) (1995), 1331-1340. Zbl0868.62045
  8. [8] G. González-Farías, J.A. Domnguez-Molina and R.M. Rodrguez-Dagnino, Efficiency of the approximated shape parameter estimator in the generalized Gaussian distribution, IEEE Transactions on Vehicular Technology 58 (8) (2009), 4214-4223. 
  9. [9] R. Krupiński and J. Purczyński, Approximated fast estimator for the shape parameter of Generalized Gaussian Distribution, Signal Processing 86 (2006), 205-211. Zbl1163.94354
  10. [10] G. Lunetta, Di una generalizzazione dello schema della curva normale, Annali della Facolta di Economia e Commercio di Palermo 17 (1963), 237-244. 
  11. [11] S. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans. Pattern Anal. Machine Intell. 11 (1989), 674-693. Zbl0709.94650
  12. [12] A.M. Mineo and M. Ruggieri, A software tool for the exponential power distribution: The normalp package, J. Statist. Software 12 (4) (2005), 1-24. 
  13. [13] S. Nadarajah, A generalized normal distribution, J. Appl. Stat. 32 (7) (2005), 685-694. Zbl1121.62447
  14. [14] J. Purczyński, Simplified method of GED distribution parameters estimation, Folia Oeconomica Stetinensia 10 (2) (2012), 35-49. 
  15. [15] K.-S. Song, A globally convergent and consistent method for estimating the shape parameter of a Generalized Gaussian Distribution, IEEE Transactions on Information Theory 52 (2) (2006), 510-527. Zbl1317.62018
  16. [16] M.T. Subbotin, On the law of frequency of errors, Matematicheskii Sbornik 31 (1923), 296-301. Zbl49.0370.01
  17. [17] P.R. Tadikamalla, Random sampling from the exponential power distribution, J. Amer. Statist. Association 75 (1980), 683-686. Zbl0477.65005
  18. [18] Van der Vaart, Asymptotic Statistics (Cambridge University Press, 1998). 
  19. [19] M.K. Varanasi and B. Aazhang, Parametric generalized Gaussian density estimation, J. Acoustical Society of America 86 (4) (1989), 1404-1415. 
  20. [20] D. Zhu and V. Zinde-Walsh, Properties and estimation of asymmetric exponential power distribution, J. Econometrics 148 (2009), 86-99. Zbl06600549

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.