Robust estimation in the multivariate normal model
Agnieszka Kulawik; Stefan Zontek
Discussiones Mathematicae Probability and Statistics (2016)
- Volume: 36, Issue: 1-2, page 53-66
- ISSN: 1509-9423
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] B.R. Clarke, Uniqueness and Fréchet differentiability of functional solutions to maximum likelihood type equations, Ann. Statist. 11 (4) (1983), 1196-1205. Zbl0541.62023
- [2] T. Bednarski and S. Zontek, Robust estimation of parameters in a mixed unbalanced model, Ann. Statist. 24 (4) (1996), 1493-1510. Zbl0878.62024
- [3] P.J. Huber, Robust Statistics (Wiley, New York, 1981). Zbl0536.62025
- [4] J. Kiefer, On large deviations of the empiric D.F. of vector chance variables and a law of iterated logarithm, Pacific J. Math. 11 (1961), 649-660. Zbl0119.34904
- [5] A. Kulawik and S. Zontek, Robust estimation in the multivariate normal model with variance components, Statistics 49 (4), 766-780. Zbl1328.62315
- [6] R.A. Maronna, Robust M-estimators of multivariate location and scatter, Ann. Statist. 4 (1) (1976), 51-67. Zbl0322.62054
- [7] P.J. Rousseeuw, Multivariate estimation with high breakdown point, Mathematical Statistics and Applications, Vol. B (Bad Tatzmannsdorf, 1983), (Reidel, Dordrecht, 1985), 283-297.
- [8] R. Zmyślony and S. Zontek, Robust M-estimator of parameters in variance components model, Discuss. Math. Probability and Statistics 22 (2002), 61-71. Zbl1037.62022
- [9] S. Zontek, Multivariate robust estimation in linear model for spatially located sensors and random input, Discuss. Math. Algebra and Stochastic Methods 18 (1998), 195-206. Zbl0946.62059