On the autotopism group of the Cordero-Figueroa semifield of order 3⁶
Walter Meléndez; Raul Figueroa; Moisés Delgado
Discussiones Mathematicae General Algebra and Applications (2016)
- Volume: 36, Issue: 1, page 117-126
- ISSN: 1509-9415
Access Full Article
topAbstract
topHow to cite
topWalter Meléndez, Raul Figueroa, and Moisés Delgado. "On the autotopism group of the Cordero-Figueroa semifield of order 3⁶." Discussiones Mathematicae General Algebra and Applications 36.1 (2016): 117-126. <http://eudml.org/doc/286909>.
@article{WalterMeléndez2016,
abstract = {In [5] M. Biliotti, V. Jha and N. Johnson were able to completely determine the autotopism group of a generalized twisted field as a subgroup of ΓL(K) × ΓL(K), where K = GF(pⁿ) and ΓL(K) is the group of nonsingular semilinear transformations over K. In this article, we consider the Cordero-Figueroa semifield of order 3⁶, which is not a generalized twisted field, and we prove that its autotopism group is isomorphic to a subgroup of ΓL(K) × ΓL(K), where K = GF(3⁶).},
author = {Walter Meléndez, Raul Figueroa, Moisés Delgado},
journal = {Discussiones Mathematicae General Algebra and Applications},
keywords = {finite presemifield; finite semifield; autotopism; autotopism group},
language = {eng},
number = {1},
pages = {117-126},
title = {On the autotopism group of the Cordero-Figueroa semifield of order 3⁶},
url = {http://eudml.org/doc/286909},
volume = {36},
year = {2016},
}
TY - JOUR
AU - Walter Meléndez
AU - Raul Figueroa
AU - Moisés Delgado
TI - On the autotopism group of the Cordero-Figueroa semifield of order 3⁶
JO - Discussiones Mathematicae General Algebra and Applications
PY - 2016
VL - 36
IS - 1
SP - 117
EP - 126
AB - In [5] M. Biliotti, V. Jha and N. Johnson were able to completely determine the autotopism group of a generalized twisted field as a subgroup of ΓL(K) × ΓL(K), where K = GF(pⁿ) and ΓL(K) is the group of nonsingular semilinear transformations over K. In this article, we consider the Cordero-Figueroa semifield of order 3⁶, which is not a generalized twisted field, and we prove that its autotopism group is isomorphic to a subgroup of ΓL(K) × ΓL(K), where K = GF(3⁶).
LA - eng
KW - finite presemifield; finite semifield; autotopism; autotopism group
UR - http://eudml.org/doc/286909
ER -
References
top- [1] A.A. Albert, Generalized twisted fields, Pacific J. Math,11,1961, 1-8. doi: 10.2140/pjm.1961.11.1 Zbl0154.27203
- [2] A.A. Albert, On nonassociative division algebras, TAMS,72,1952, 296-309. doi: 10.1090/S0002-9947-1952-0047027-4 Zbl0046.03601
- [3] A.A. Albert, Finite division algebras and finite planes, Proc. Sympos. Appl. Math.,10,1960, 53-70. doi: 10.1090/psapm/010/0116036
- [4] J. Bierbrauer, Projective polynomials, a projection construction and a family of semifields, Designs, Codes and Cryptography,79,2016, 183-200. doi: 10.1007/s10623-015-0044-z Zbl1338.12008
- [5] M. Biliotti, V. Jha and N. Johnson, The collineation groups of generalized twisted field planes, G. Dedicata,76,1999, 91-126. Zbl0936.51003
- [6] N. Jhonson, V. Jha and M. Biliotti, Handbook of finite translation planes, Boca Raton: Chapman & Hall/CRC,2007. Zbl1136.51001
- [7] M. Cordero and R. Figueroa, Towards a characterization of the generalized twisted field planes, J. Geom. 52 1995, 54-63. doi: 10.1007/BF01406826 Zbl0824.51001
- [8] Coulter,R.S. Coulter, M. Henderson and P. Kosick, Planar polynomials for conmutative semifields with specified nuclei, Des. Codes Cryptogr. 44 2007, 275-286. Zbl1215.12012
- [9] L.E. Dickson, Linear algebras in which division is always uniquely possible, Trans. Amer. Math. Soc. 7 1906, 370-390. doi: 10.1090/S0002-9947-1906-1500755-5 Zbl37.0111.06
- [10] R. Figueroa, A characterization of the generalized twisted field planes of characteristic ≥ 5, Geom. Dedicata 50 1994, 205-216. doi: 10.1007/BF01265311 Zbl0807.51007
- [11] D.R. Hughes and F.C. Piper, Projective Planes, NewYork, 1973.
- [12] D. E. Knuth, Finite semifields and projective planes, J. Algebra 2 1965, 182-217. doi: 10.1016/0021-8693(65)90018-9 Zbl0128.25604
- [13] M. Lavrauw, On the isotopism classes of finite semifields, Finite Fields and Their Applications 14 2008, 897-910. doi: 10.1016/j.ffa.2008.05.002 Zbl1167.51005
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.