Superior subalgebras and ideals of BCK/BCI-algebras
Discussiones Mathematicae General Algebra and Applications (2016)
- Volume: 36, Issue: 1, page 85-99
- ISSN: 1509-9415
Access Full Article
topAbstract
topHow to cite
topYoung Bae Jun, and Seok Zun Song. "Superior subalgebras and ideals of BCK/BCI-algebras." Discussiones Mathematicae General Algebra and Applications 36.1 (2016): 85-99. <http://eudml.org/doc/286920>.
@article{YoungBaeJun2016,
abstract = {The notions of superior subalgebras and (commutative) superior ideals are introduced, and their relations and related properties are investigated. Conditions for a superior ideal to be commutative are provided.},
author = {Young Bae Jun, Seok Zun Song},
journal = {Discussiones Mathematicae General Algebra and Applications},
keywords = {superior mapping; superior subalgebra; (commutative) superior ideal},
language = {eng},
number = {1},
pages = {85-99},
title = {Superior subalgebras and ideals of BCK/BCI-algebras},
url = {http://eudml.org/doc/286920},
volume = {36},
year = {2016},
}
TY - JOUR
AU - Young Bae Jun
AU - Seok Zun Song
TI - Superior subalgebras and ideals of BCK/BCI-algebras
JO - Discussiones Mathematicae General Algebra and Applications
PY - 2016
VL - 36
IS - 1
SP - 85
EP - 99
AB - The notions of superior subalgebras and (commutative) superior ideals are introduced, and their relations and related properties are investigated. Conditions for a superior ideal to be commutative are provided.
LA - eng
KW - superior mapping; superior subalgebra; (commutative) superior ideal
UR - http://eudml.org/doc/286920
ER -
References
top- [1] J. D. Bashford and P. D. Jarvis, The genetic code as a peridic table: algebraic aspects, BioSystems 57 (2000), 147-161. doi: 10.1016/S0303-2647(00)00097-6
- [2] L. Frappat, A. Sciarrino and P. Sorba, Crystalizing the genetic code, J. Biological Physics 27 (2001), 1-34. doi: 10.1023/A:1011874407742 Zbl1001.92009
- [3] Y. Huang, BCI-algebra (Science Press, Beijing, 2006). ISBN 97-7-03-015411.
- [4] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica 23 (1978), 1-26. Zbl0385.03051
- [5] Y.B. Jun and S.Z. Song, Codes based on BCK-algebras, Inform. Sci. 181 (2011), 5102-5109. doi: 10.1016/j.ins.2011.07.006 Zbl1241.94039
- [6] M.K. Kinyon and A.A. Sagle, Quadratic dynamical systems and algebras, J. Diff. Equ. 117 (1995), 67-126. doi: 10.1006/jdeq.1995.1049 Zbl0830.17001
- [7] J. Meng, Commutative ideals in BCK-algebras, Pure Appl. Math. (in China) 9 (1991), 49-53. Zbl0875.06017
- [8] J. Meng, On ideals in BCK-algebras, Math. Japonica 40 (1994), 143-154. Zbl0807.06012
- [9] J. Meng and Y.B. Jun, BCK-algebras (Kyungmoon Sa Co. Seoul, 1994).
- [10] R. Sáanchez, R. Grau and E. Morgado, A novel Lie algebra of the genetic code over the Galois field of four DNA bases, Mathematical Biosciences 202 (2006), 156-174. doi: 10.1016/j.mbs.2006.03.017 Zbl1100.92021
- [11] J.J. Tian and B.L. Li, Coalgebraic structure of genetics inheritance, Mathematical Biosciences and Engineering 1 (2004), PMID: 20369970 [PubMed], 243-266. Zbl1061.17027
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.