Osservazioni sullo spazio dei moduli delle curve trigonali

Fabio Bardelli; Andrea Del Centina

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1981)

  • Volume: 70, Issue: 2, page 96-100
  • ISSN: 1120-6330

Abstract

top
Let C be an algebraic projective smooth and trigonal curve of genus g 5 . In this paper we define, in a way equivalent to that followed by A. Maroni in [1], an integer m , called the species of C , which is a birational invariant having the property that 0 m g + 2 3 and m g 0 mod(2). In section 1 we prove that for every g ( 5 ) and every m , as before, there are trigonal curves of genus g and species m . In section 2 we define the space g , 3 ; m 1 of moduli of trigonal curves of genus g and species m . We note that g , 3 ; m 1 is irreducible and unirational and we prove that d i m g , 3 ; m 1 = 2 g + 2 m if m 0 and d i m g , 3 ; 0 1 = 2 g + 1 . As Corollaries we obtain the following facts: the general trigonal curve of even genus is of species 0 , the general trigonal curve of odd genus is of species 1 and the space g , 3 1 of moduli of trigonal curves of genus g is unirational. The results of this note are valid over any algebraically closed field of any characteristic.

How to cite

top

Bardelli, Fabio, and Del Centina, Andrea. "Osservazioni sullo spazio dei moduli delle curve trigonali." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 70.2 (1981): 96-100. <http://eudml.org/doc/287045>.

@article{Bardelli1981,
author = {Bardelli, Fabio, Del Centina, Andrea},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {moduli of trigonal curves of genus g and species m},
language = {ita},
month = {2},
number = {2},
pages = {96-100},
publisher = {Accademia Nazionale dei Lincei},
title = {Osservazioni sullo spazio dei moduli delle curve trigonali},
url = {http://eudml.org/doc/287045},
volume = {70},
year = {1981},
}

TY - JOUR
AU - Bardelli, Fabio
AU - Del Centina, Andrea
TI - Osservazioni sullo spazio dei moduli delle curve trigonali
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1981/2//
PB - Accademia Nazionale dei Lincei
VL - 70
IS - 2
SP - 96
EP - 100
LA - ita
KW - moduli of trigonal curves of genus g and species m
UR - http://eudml.org/doc/287045
ER -

References

top
  1. Maroni, A. (1946) - Serie lineari speciali sulle curve trigonali, «Ann. di Mat. Pura e Appl.», 25 IV. Zbl0061.35407
  2. Arbarello, E. e Cornalba, M.. Footnotes to a paper of Beniamino Segre, preprint. Zbl0454.14023
  3. Severi, F. (1922) - Sul teorema di esistenza di Riemann, «Rend, del Circolo Mat. di Palermo», XLVI. 
  4. Saint-Donat, B. (1973) - On Petri's analysis of the linear sistem of quadrics through a canonical curve, «Math. Ann.», 206. Zbl0315.14010
  5. Griffiths, P. e Harris, J. (1978) - Principles of algebraic geometry, Wiley. Zbl0408.14001
  6. Fulton, W. (1969) - Hurwitz schemes and irreducibility of the moduli of algebraic curves, «Ann. of Math.»90. Zbl0194.21901
  7. Mumford, D. (1965) - Geometric invariant theory, Springer-Verlag. Zbl0147.39304
  8. Turrini, C. (1979) - Gli automorfismi delle rigate geometriche razionali, «Ist. Lombardo Rend. Sc.» A, 113. Zbl0464.14014
  9. Hartshorne, R. (1977) - Algebraic geometry, Springer-Verlag. Zbl0367.14001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.