The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

An object-based model for convective cold pool dynamics

S.J. Böing

Mathematics of Climate and Weather Forecasting (2016)

  • Volume: 2, Issue: 1
  • ISSN: 2353-6438

Abstract

top
A simple model of the organization of atmospheric moist convection by cold outflows is presented. The model consists of two layers: a lower layer where instability gradually builds up, and an upper layer where instability is rapidly released. Its formulation is inspired by Abelian sandpile models: instability and convection are both represented in terms of particles that are coupled to a lattice grid. An excess of particles in the lower layer triggers a particle release into the upper (cloud) layer. Particles in the upper layer also induce particle movement in the lower layer: this reverse coupling represents the effect of precipitation and the associated cold outflows. The model shows two behavioral regimes. Activity is scattered when the reverse coupling is weak, but when it is strong, convection forms cellular patterns. Though this model does not contain a detailed representation of physical processes in convection, it captures some key dynamical features of precipitating convection seen in satellite observations and LES studies. These include the formation of open cells, temporal oscillations in convective intensity, hysteresis, and the effect of precipitation on the scale of convection. We argue that an object-based representation of convection may be able to capture properties of convective organization that are missing in traditional parameterizations.

How to cite

top

S.J. Böing. "An object-based model for convective cold pool dynamics." Mathematics of Climate and Weather Forecasting 2.1 (2016): null. <http://eudml.org/doc/287061>.

@article{S2016,
abstract = {A simple model of the organization of atmospheric moist convection by cold outflows is presented. The model consists of two layers: a lower layer where instability gradually builds up, and an upper layer where instability is rapidly released. Its formulation is inspired by Abelian sandpile models: instability and convection are both represented in terms of particles that are coupled to a lattice grid. An excess of particles in the lower layer triggers a particle release into the upper (cloud) layer. Particles in the upper layer also induce particle movement in the lower layer: this reverse coupling represents the effect of precipitation and the associated cold outflows. The model shows two behavioral regimes. Activity is scattered when the reverse coupling is weak, but when it is strong, convection forms cellular patterns. Though this model does not contain a detailed representation of physical processes in convection, it captures some key dynamical features of precipitating convection seen in satellite observations and LES studies. These include the formation of open cells, temporal oscillations in convective intensity, hysteresis, and the effect of precipitation on the scale of convection. We argue that an object-based representation of convection may be able to capture properties of convective organization that are missing in traditional parameterizations.},
author = {S.J. Böing},
journal = {Mathematics of Climate and Weather Forecasting},
keywords = {cold pools; downdrafts; hysteresis; cellular automata; moist convection; cumulus; error growth},
language = {eng},
number = {1},
pages = {null},
title = {An object-based model for convective cold pool dynamics},
url = {http://eudml.org/doc/287061},
volume = {2},
year = {2016},
}

TY - JOUR
AU - S.J. Böing
TI - An object-based model for convective cold pool dynamics
JO - Mathematics of Climate and Weather Forecasting
PY - 2016
VL - 2
IS - 1
SP - null
AB - A simple model of the organization of atmospheric moist convection by cold outflows is presented. The model consists of two layers: a lower layer where instability gradually builds up, and an upper layer where instability is rapidly released. Its formulation is inspired by Abelian sandpile models: instability and convection are both represented in terms of particles that are coupled to a lattice grid. An excess of particles in the lower layer triggers a particle release into the upper (cloud) layer. Particles in the upper layer also induce particle movement in the lower layer: this reverse coupling represents the effect of precipitation and the associated cold outflows. The model shows two behavioral regimes. Activity is scattered when the reverse coupling is weak, but when it is strong, convection forms cellular patterns. Though this model does not contain a detailed representation of physical processes in convection, it captures some key dynamical features of precipitating convection seen in satellite observations and LES studies. These include the formation of open cells, temporal oscillations in convective intensity, hysteresis, and the effect of precipitation on the scale of convection. We argue that an object-based representation of convection may be able to capture properties of convective organization that are missing in traditional parameterizations.
LA - eng
KW - cold pools; downdrafts; hysteresis; cellular automata; moist convection; cumulus; error growth
UR - http://eudml.org/doc/287061
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.