Tarski Geometry Axioms – Part II

Roland Coghetto; Adam Grabowski

Formalized Mathematics (2016)

  • Volume: 24, Issue: 2, page 157-166
  • ISSN: 1426-2630

Abstract

top
In our earlier article [12], the first part of axioms of geometry proposed by Alfred Tarski [14] was formally introduced by means of Mizar proof assistant [9]. We defined a structure TarskiPlane with the following predicates: of betweenness between (a ternary relation), of congruence of segments equiv (quarternary relation), which satisfy the following properties: congruence symmetry (A1), congruence equivalence relation (A2), congruence identity (A3), segment construction (A4), SAS (A5), betweenness identity (A6), Pasch (A7). Also a simple model, which satisfies these axioms, was previously constructed, and described in [6]. In this paper, we deal with four remaining axioms, namely: the lower dimension axiom (A8), the upper dimension axiom (A9), the Euclid axiom (A10), the continuity axiom (A11). They were introduced in the form of Mizar attributes. Additionally, the relation of congruence of triangles cong is introduced via congruence of sides (SSS). In order to show that the structure which satisfies all eleven Tarski’s axioms really exists, we provided a proof of the registration of a cluster that the Euclidean plane, or rather a natural [5] extension of ordinary metric structure Euclid 2 satisfies all these attributes. Although the tradition of the mechanization of Tarski’s geometry in Mizar is not as long as in Coq [11], first approaches to this topic were done in Mizar in 1990 [16] (even if this article started formal Hilbert axiomatization of geometry, and parallel development was rather unlikely at that time [8]). Connection with another proof assistant should be mentioned – we had some doubts about the proof of the Euclid’s axiom and inspection of the proof taken from Archive of Formal Proofs of Isabelle [10] clarified things a bit. Our development allows for the future faithful mechanization of [13] and opens the possibility of automatically generated Prover9 proofs which was useful in the case of lattice theory [7].

How to cite

top

Roland Coghetto, and Adam Grabowski. "Tarski Geometry Axioms – Part II." Formalized Mathematics 24.2 (2016): 157-166. <http://eudml.org/doc/287088>.

@article{RolandCoghetto2016,
abstract = {In our earlier article [12], the first part of axioms of geometry proposed by Alfred Tarski [14] was formally introduced by means of Mizar proof assistant [9]. We defined a structure TarskiPlane with the following predicates: of betweenness between (a ternary relation), of congruence of segments equiv (quarternary relation), which satisfy the following properties: congruence symmetry (A1), congruence equivalence relation (A2), congruence identity (A3), segment construction (A4), SAS (A5), betweenness identity (A6), Pasch (A7). Also a simple model, which satisfies these axioms, was previously constructed, and described in [6]. In this paper, we deal with four remaining axioms, namely: the lower dimension axiom (A8), the upper dimension axiom (A9), the Euclid axiom (A10), the continuity axiom (A11). They were introduced in the form of Mizar attributes. Additionally, the relation of congruence of triangles cong is introduced via congruence of sides (SSS). In order to show that the structure which satisfies all eleven Tarski’s axioms really exists, we provided a proof of the registration of a cluster that the Euclidean plane, or rather a natural [5] extension of ordinary metric structure Euclid 2 satisfies all these attributes. Although the tradition of the mechanization of Tarski’s geometry in Mizar is not as long as in Coq [11], first approaches to this topic were done in Mizar in 1990 [16] (even if this article started formal Hilbert axiomatization of geometry, and parallel development was rather unlikely at that time [8]). Connection with another proof assistant should be mentioned – we had some doubts about the proof of the Euclid’s axiom and inspection of the proof taken from Archive of Formal Proofs of Isabelle [10] clarified things a bit. Our development allows for the future faithful mechanization of [13] and opens the possibility of automatically generated Prover9 proofs which was useful in the case of lattice theory [7].},
author = {Roland Coghetto, Adam Grabowski},
journal = {Formalized Mathematics},
keywords = {Tarski’s geometry axioms; foundations of geometry; Euclidean plane; Tarski's geometry axioms},
language = {eng},
number = {2},
pages = {157-166},
title = {Tarski Geometry Axioms – Part II},
url = {http://eudml.org/doc/287088},
volume = {24},
year = {2016},
}

TY - JOUR
AU - Roland Coghetto
AU - Adam Grabowski
TI - Tarski Geometry Axioms – Part II
JO - Formalized Mathematics
PY - 2016
VL - 24
IS - 2
SP - 157
EP - 166
AB - In our earlier article [12], the first part of axioms of geometry proposed by Alfred Tarski [14] was formally introduced by means of Mizar proof assistant [9]. We defined a structure TarskiPlane with the following predicates: of betweenness between (a ternary relation), of congruence of segments equiv (quarternary relation), which satisfy the following properties: congruence symmetry (A1), congruence equivalence relation (A2), congruence identity (A3), segment construction (A4), SAS (A5), betweenness identity (A6), Pasch (A7). Also a simple model, which satisfies these axioms, was previously constructed, and described in [6]. In this paper, we deal with four remaining axioms, namely: the lower dimension axiom (A8), the upper dimension axiom (A9), the Euclid axiom (A10), the continuity axiom (A11). They were introduced in the form of Mizar attributes. Additionally, the relation of congruence of triangles cong is introduced via congruence of sides (SSS). In order to show that the structure which satisfies all eleven Tarski’s axioms really exists, we provided a proof of the registration of a cluster that the Euclidean plane, or rather a natural [5] extension of ordinary metric structure Euclid 2 satisfies all these attributes. Although the tradition of the mechanization of Tarski’s geometry in Mizar is not as long as in Coq [11], first approaches to this topic were done in Mizar in 1990 [16] (even if this article started formal Hilbert axiomatization of geometry, and parallel development was rather unlikely at that time [8]). Connection with another proof assistant should be mentioned – we had some doubts about the proof of the Euclid’s axiom and inspection of the proof taken from Archive of Formal Proofs of Isabelle [10] clarified things a bit. Our development allows for the future faithful mechanization of [13] and opens the possibility of automatically generated Prover9 proofs which was useful in the case of lattice theory [7].
LA - eng
KW - Tarski’s geometry axioms; foundations of geometry; Euclidean plane; Tarski's geometry axioms
UR - http://eudml.org/doc/287088
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.