Several observations about Maneeals - a peculiar system of lines

Naga Vijay Krishna Dasari; Jakub Kabat

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica (2016)

  • Volume: 15, page 51-68
  • ISSN: 2300-133X

Abstract

top
For an arbitrary triangle ABC and an integer n we define points Dn, En, Fn on the sides BC, CA, AB respectively, in such a manner that |AC|n|AB|n=|CDn||BDn|,|AB|n|BC|n=|AEn||CEn|,|BC|n|AC|n=|BFn||AFn|. A C n A B n = C D n B D n , A B n B C n = A E n C E n , B C n A C n = B F n A F n . Cevians ADn, BEn, CFn are said to be the Maneeals of order n. In this paper we discuss some properties of the Maneeals and related objects.

How to cite

top

Naga Vijay Krishna Dasari, and Jakub Kabat. "Several observations about Maneeals - a peculiar system of lines." Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica 15 (2016): 51-68. <http://eudml.org/doc/287139>.

@article{NagaVijayKrishnaDasari2016,
abstract = {For an arbitrary triangle ABC and an integer n we define points Dn, En, Fn on the sides BC, CA, AB respectively, in such a manner that |AC|n|AB|n=|CDn||BDn|,|AB|n|BC|n=|AEn||CEn|,|BC|n|AC|n=|BFn||AFn|. \[\{\{\{\{\left| \{AC\} \right|^n \} \over \{\left| \{AB\} \right|^n \}\} = \{\{\left| \{CD\_n \} \right|\} \over \{\left| \{BD\_n \} \right|\}\},\} \hfill & \{\{\{\left| \{AB\} \right|^n \} \over \{\left| \{BC\} \right|^n \}\} = \{\{\left| \{AE\_n \} \right|\} \over \{\left| \{CE\_n \} \right|\}\},\} \hfill & \{\{\{\left| \{BC\} \right|^n \} \over \{\left| \{AC\} \right|^n \}\} = \{\{\left| \{BF\_n \} \right|\} \over \{\left| \{AF\_n \} \right|\}\}.\}\} \] Cevians ADn, BEn, CFn are said to be the Maneeals of order n. In this paper we discuss some properties of the Maneeals and related objects.},
author = {Naga Vijay Krishna Dasari, Jakub Kabat},
journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
keywords = {Maneeals; Maneeal’s Points; Maneeals triangle of order n; Maneeal’s Pedal triangle of order n; Cauchy-Schwarz inequality; Lemoine’s Pedal Triangle Theorem; Maneeal's points; Maneeals triangle of order $n$; Maneeal’s pedal triangle of order $n$; Lemoine's pedal triangle theorem},
language = {eng},
pages = {51-68},
title = {Several observations about Maneeals - a peculiar system of lines},
url = {http://eudml.org/doc/287139},
volume = {15},
year = {2016},
}

TY - JOUR
AU - Naga Vijay Krishna Dasari
AU - Jakub Kabat
TI - Several observations about Maneeals - a peculiar system of lines
JO - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY - 2016
VL - 15
SP - 51
EP - 68
AB - For an arbitrary triangle ABC and an integer n we define points Dn, En, Fn on the sides BC, CA, AB respectively, in such a manner that |AC|n|AB|n=|CDn||BDn|,|AB|n|BC|n=|AEn||CEn|,|BC|n|AC|n=|BFn||AFn|. \[{{{{\left| {AC} \right|^n } \over {\left| {AB} \right|^n }} = {{\left| {CD_n } \right|} \over {\left| {BD_n } \right|}},} \hfill & {{{\left| {AB} \right|^n } \over {\left| {BC} \right|^n }} = {{\left| {AE_n } \right|} \over {\left| {CE_n } \right|}},} \hfill & {{{\left| {BC} \right|^n } \over {\left| {AC} \right|^n }} = {{\left| {BF_n } \right|} \over {\left| {AF_n } \right|}}.}} \] Cevians ADn, BEn, CFn are said to be the Maneeals of order n. In this paper we discuss some properties of the Maneeals and related objects.
LA - eng
KW - Maneeals; Maneeal’s Points; Maneeals triangle of order n; Maneeal’s Pedal triangle of order n; Cauchy-Schwarz inequality; Lemoine’s Pedal Triangle Theorem; Maneeal's points; Maneeals triangle of order $n$; Maneeal’s pedal triangle of order $n$; Lemoine's pedal triangle theorem
UR - http://eudml.org/doc/287139
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.